

정 오 표

〈예비 수학교사를 위한 스스로 완성하는 확률과 통계, 박경은〉

제1장 혹	장 확률		
페이지	수정	이유	
5	(공리 2) $\mathrm{P}(S)=1$ 면 (공리 3) 사건들이 상호배반이며 (즉, $i\neq j$ 일 때, $A_i\cap A_j=\varnothing$)		
9	한다. 그리고 어떤 시행에서 일어날 수 있는 모든 가능한 결과들의 집합을 표본공간 Space (sample pace)이라 하며, 어떤 시행에서 일어날 수 있는 모든 경우의 집합인 표본공		
12	이다. 그리고 구하려는 확률 A $^{C}\cap B$ C 는 $(A\cup B)^{C}$ 이므로 $A\cup B=\{2,\ 4,\ 6\}\cup\{1,\ 2,\ 3,\ 6\}=\{1,\ 2,\ 3,\ 4,\ 6\}$		
15	이번에는 두 사건 A , B 에 일어나거나 있다. 곱의법칙(multiplication rule) 은 두 사건 A , B 가 잇달아 일어나는 사건 또는 동시에 일어나는 경우의 수를 구하		
17	에 대해 확인해보면. 0을 제외한 9가지 처음에 꺼낸 공에서 확인할 수 있는 수는 10가지 처음에 꺼낸 공을 상자에 넣고 두 번째로 꺼낸 공에서 확인할 수 있는 수는 10가지 두 번째로 꺼낸 공을 상자에 넣고 세 번째로 꺼낸 공에서 확인할 수 있는 수도 10가지 이다. 따라서 복원추출로부터 구하는 경우의 수는 곱의 법칙에 의하여 9 10×10×10 = 1000 이다. 다음으로 꺼낸 공을 상자에 다시 넣지 않는 비복원추출에서 확인할 수 있는 경우의수는 처음에 꺼낸 공에서 확인할 수 있는 수는 10주시 제외한 9가지		
16	9 10×9×8 = 720 이다.		
23	$k \times (2! \times 3!) = 5!$ 이다. 따라서 구하는 순열의 수는		
30	경우의 수는 각각 10 가지이다. 따라서 구하는 경우의 수는 $8\times_{10} \Pi_{\overline{\bf 6}}^{=} 8\times 10^{7}$		
31	$_{n+r-1}$ \mathbf{C}_r 중복조합의 수 $_n\mathbf{H}_r$ 는 일반적으로 조합의 수 $_n\mathbf{C}_r$ 로 바꾸어 구한다. 예를 들어 \mathbf{A}_r		

42							1
11 2		!이 아파트 입구여 역은 0 ≤ x ≤ 60 오든지 20분간	$0,\ 0 \le y \le 6$	이 된다. 그	60	y = x + 20 $y = x - 20$	1
	이다. 따라서 니	x — y ≤ 해양과 도영군이 2000	만날 확률은	7	O 20 40	60 \$	가
		2000 200 360 3600	5 9		1		
46	과목 번호	1	2	3	4	합계	
	학생 수(명)	65 55	23	18	4	100	
49	이다. 전기자동차가 야 하므로 구하는 :				- ' '		'가'
50	이다. 그리고 뽑힌 멤버들 중에 포함된						
63		$\frac{P(A) \times P}{P(A \cap A)} = \frac{P(A) \times P}{P(A \cap A) \times P(A \mid A) + 1}$ $\frac{P(A) \times P(A \mid A) + 1}{1 + 0.4 \times 0.2}$	(R A) $P(B) \times P(B)$	/			A B
67	이다. 따라서 두 시 이상의 성인에게						가
68	이다. 따라서 <i>A</i> 와 . P(<i>A</i> ∩ .	B, B와 C, C P({1}) B∩ C) = P(1)					
69	때, 이 대학교 학생 사는 사건과 S대학				률을 구하시.	오 (단, 책을	가
	중에 합격할 확률이 구하시오. (단, 각 지					격할 확률을	가
76	08 S인터넷 방송사는 결과, 실제로 맑은 40%, 3년 동안 목 때, 실제로도 날	<u>실제로 맑은</u> 말은 날이라고 (기보의 경우가 날인 계보 한 경우기	80%, 실제로 60%였다. 일	비온 날에 맑다 기예보관이 맑	·고 예보한 경우가 다고 예보를 했을	

페이지	수정		이유
89	예를 들어, 동전의 앞면이 나올 때까지 동전을 던지는 시행을 반복한다고 하면 표본공간은 $S = \{ \text{H, TH, TTH, TTTH, } \dots \}$ 이고, 동전의 앞면이 처음 나올 때까지의 시행 횟 수를 Y 라 하면	R +41 +42 +93 +:	
90	확률변수는 함수의 일종이므로, 함수처럼 더하거나, 곱하거나, 상수 있다. 예를 들어 같은 표본공간에서 정의된 두 확률변수 $X, Y: S \rightarrow$ 과 같은 새로운 확률변수를 정의한다. (단. $w \in S$)		_ ' /
94	• $\sum_{i=1}^{n} P(X = x_i) = \sum_{i=1}^{n} f(x_i) = 1$ • $P(X \le x_k) = \sum_{i=1}^{k} P(X = x_i) = \sum_{i=1}^{k} f(x_i)$ (단, $i \le k$)		<i>i</i> =1
	 예제 2.4 확률변수 X의 확률질량함수가 P(X=x)=f(x)=kx²+x (x=1, 2, 3, 4 일 때, 상수 k의 값을 구하시오 k > 물이 확률질량함수에 대한 확률변수 X의 확률분포표는 	1, 5)	
	X 1 2 3 4	5	합계
	P(X=x) = f(x) $k+1$ $4k+2$ $9k+3$ $16k+4$	25k+5	1
	$P(X=x) = f(x) \qquad \frac{k}{1 \times 2} \qquad \frac{k}{2 \times 3} \qquad \frac{k}{3 \times 4} \qquad \frac{k}{4 \times 5} \qquad .$	<u>k</u> 5×6	1
98	$f(1) + f(2) + f(3) + f(4) + f(5)$ $= (k+1) + (4k+2) + (9k+3) + (16k+4) + (25k+5) = 1$ $= \frac{k}{1 \times 2} + \frac{k}{2 \times 3} + \frac{k}{3 \times 4} + \frac{k}{4 \times 5} + \frac{k}{5 \times 6}$ $= k \left\{ 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \frac{1}{4} - \frac{1}{5} + \frac{1}{5} - \frac{1}{6} \right\} = k \left(1 - \frac{1}{6} \right) = 1$		

98		
90	이다. 따라서 구하는 상수 k는	
	$k = -\frac{14}{55} \ k = \frac{6}{5}$	
104	S. I. T. E.	
104	그리고 확률변수 X 가 가질 수 있는 값의 범위는 이다. 따라서 확률변수 $X($ 시킨)는 $0 \le X$ $X(x) = x \ (x \ge 0)$	
107		
	$a \ a+da$	
111	① $x < -1$ 일 때, $F(x) = 0$	
	2 -1 ≤ x < 1 일 때,	①, ②, ③으로
	f^x f^x 2 2 1 1 1 2 2 1 2 1	<u> </u>
	$F(x) = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{x} \frac{3}{4} (1 - t^2) dt = \frac{3}{4} \left[t - \frac{1}{3} t^3 \right]_{-1}^{x} = \frac{3}{4} \left(x - \frac{1}{3} x^3 + \frac{2}{3} \right)$	
	$3x \ge 1$ 일 때,	
	$F(x) = \int_{-\infty}^{\infty} f(t) \ dt = \int_{-1}^{1} \frac{3}{4} (1 - t^2) \ dt = \frac{3}{4} \left[t - \frac{1}{3} t^3 \right]_{-1}^{1} = \frac{3}{4} \left(2 - \frac{2}{3} \right) = 1$	
126	이 성립한다.	
	이 성업한다. 또한 두 확률변수 X와 Y가 독립변수이면	
	$E(X \times Y) = E(X) \times E(Y)$	
133	7-12	X
	$V(X) = E(X^{2}) - \{E(X)\}^{2} = 7 - \left(\frac{5}{2}\right)^{2} = \frac{3}{4}$ $V(g(X)) = E(\{g(X)\}^{2}) - \{E(g(X))\}^{2}$	g(X)
	이고, 표준편차는	
	$ ightarrow$ 물이 연속확률변수 X 와 X^2 의 기댓값 $\mathrm{E}(X)$ 와 $\mathrm{E}(X^2)$ 은	
	$E(X) = \int_{0}^{\infty} x \times e^{-x} dx = 1$	
	$E(X^2) = \int_0^\infty x^2 \times e^{-x} dx = \frac{2}{12}$	

이다. 그리고 확률변수 X 의 분산 $\mathrm{V}\left(X\right)$ 과 표준편차 $\sigma(X)$ 는	
$V(X) = E(X^2) - \{E(X)\}^2 = 4^2 - (1)^2 = \theta^1$	
$\sigma(X) = \sqrt{V(X)} = \sqrt{\overline{u}} = \theta_1$	
이다. 따라서 확률변수의 함수 $g(X) = 2X + 1$ 에 대한 기댓값, 분산, 표준편차는 각각	
$E(2X+1) = 2E(X) + 1 = 2 \times 1 + 1 = 3$	
$V(2X+1) = (2)^2 V(X) = 4 \times \theta = \theta^4$	
$\sigma(2X+3) = 2 \sigma(X) = 2 \times \theta = \theta^2$	
의 값을 갖고 각각의 확률변수에 대응하는 확률분포는	x, y
g(y) = P(Y = y) = P(Y = u(x))	
이다. 여기서 두 확률변수 X 와 Y 는 일대일 변환을 이루므로 역관계 $X=u^{-1}(Y)$	<i>X</i> , <i>Y</i>
가 존재한다. 따라서 확률변수 Y의 확률질량함수는	
$g(y) = P(Y = u(x)) = P(X = u^{-1}(y)) = f(u^{-1}(y))$	
이다.	
(*가 그) 에서 <mark>그가 - ∞ < u < ∞근이 여소이며 가즈가 하스이다 그리고 인 일 때, 새로운 확률변수 $Y = \tan X$의 확률밀도함수를 구하시오</mark>	가
10 회로버스 V기 그가 (_ 1 1)사에서 최르미드하스가	(
$f(x) = \begin{cases} \frac{1}{2}, & \text{if } x < 1 \\ \frac{1}{2}, & \text{otherwise} \end{cases}$)
of the same of the	
일 때, 새로운 확률변수 $Y = X^*$ 의 확률밀도함수를 구하시오.	
20 확률변수 X 의 확률밀도함수가 $2x, 0 < x < 1$	(
$f(x) = \begin{cases} 2e^{-2x}, & x \ge 0 \end{cases}$)
(0, 그 외의 경우	
일 때, $y \ge 1$ 에 대한 새로운 확률변수 $Y = e^X$ 의 확률밀도함수를 구하시오	
	$V(X) = \mathbb{E}(X^2) - \{\mathbb{E}(X)\}^2 = 1^2 - (1)^2 = 0^1$ $\sigma(X) = \sqrt{V(X)} = \sqrt{0} = 0 1$ 이다. 따라서 확률변수의 함수 $g(X) = 2X + 1$ 에 대한 가맛값, 분산, 표준편차는 각각 $\mathbb{E}(2X + 1) = 2\mathbb{E}(X) + 1 = 2 \times 1 + 1 = 3$ $V(2X + 1) = (2)^2 V(X) = 4 \times 0 = 0^4$ $\sigma(2X + 3) = 2 \sigma(X) = 2 \times 0 = 0^4$ 의 값을 갖고 각각의 확률변수에 대응하는 확률분포는 $g(y) = P(Y = y) = P(Y = u(x))$ 이다. 여기서 두 확률변수 X 와 Y 는 일대일 변환을 이루므로 역관계 $X = u^{-1}(Y)$ 가 존재한다. 따라서 확률변수 Y 의 확률질량함수는 $g(y) = P(Y = u(x)) = P(X = u^{-1}(y)) = f(u^{-1}(y))$ 이다. $(*n - x) \text{ old } x \to x$

이지	ATI				010
71 ^ 1	수정				이유
r	한 효능은 효과	과적이거나 비효과적으로 오직 두	가지의 가능한 경-	우로 판단한다. 왜 음	
	와 같이 어떤	시행을 독립적으로 반복할 때 기	능한 결과가 오직	두 가지인 경우를	
	베르누이시행(B	Bernoulli trials)이라 한다. 즉, 베	르누이시행은 표본공	공간이 오직 두 가	
8	+	The state of the s		1	'S'
	4	SSSSF, SSSFS, SSFSS SFSSS, FSSS FSSSS	₅ C ₄ =5	5C4(0.4)4(0.6)1	가
	5	SSSSS	₅ C ₅ =1	5C5(0.4)5(0.6)0	
1			0.001		0.1
	품의 가	서 생산하는 제품의 월별 불량률은 수를 확률변수 X 로 놓으면, X 는 를 따른다. 따라서 구하는 기댓값 E	0-1이고, 2000개의 2 모수가 (2000, 0-1)	인 이항분포 <i>B</i> (2000,	0.001
6		론조사 기관에서 전화 설문을 실시하 25% 0.25 이다. 4개의 설문 결과를 얻기			0.25 25%
2	0	황분포 $X \sim B\left(\frac{3}{12}, \frac{2}{3}\right)$ 이다. 이외수 있다. 즉, 주머니에서 비복원			12 3
	함수 $f(x)$ 가	를 초기하확률변수(hyper geometric $= \frac{{}_M C_x \times_{N-M} C_{n-x}}{{}_N C_n} \ \ (단, \ x=0, \ 1$	XS 왕고	고, 초기하확률변수 	가
0	70 mark 200 mark 11 mg				1
	하여 후	다송분포의 적률생성함수를 구한다. 사률변수 X 의 적률생성함수 $M_X(t)$ 는 $M_X(t)$ = $\mathbf{E}\left(e^{tX}\right)$ = $\sum_{x=\pm 0}^{\infty}e^{tx}\times f(x)$ =	=	률생성함수의 정의에 의	0
2	○ 증명 이항분3	$\mathbb{E} X \sim B(n, p)$ 의 적률생성함수는 .	$M_X(t) = (pe^t + q)^n$	이므로 표준화변수 Z=	
	$\frac{11-\mu}{\sigma}$	$=\frac{X-np}{\sqrt{npq}}$ 의 적률생성함수 $M_{Z(r)}$	는		
		M	$f_Z(t)$		
7	는 같은 확률	밀도함수를 갖는다. 카이제곱분포여	∥서 모수 <i>ν를</i> 자유!	E(degree of	
	freedom)라고 한다. 또는 di	부르며 자유도에 대한 확률은 부록:	의 카이제곱분포표를	이용하여 구	
	Total 11				

000		1
표본분포이 아니라 모 검정, 동질 이다. 따라 야 한다.	대 전 학률을 구할 때 사용하는 분포가 집단의 분산에 대한 추정과 검정, 적합도 성 검정, 독립성 검정 등에 사용하는 분포 서 카이제곱분포표를 읽고 해석할 줄 알아 $\chi^2_{\alpha}(\nu)$ 당값 $\chi^2_{\alpha,\nu}$ 은 카이제곱분포 $X\sim\chi^2(\nu)$ 에서 오른쪽 꼬리부분의 확률이 α	
	예로, 자유도가 10 일 때, $\mathrm{P}(X \geq t($ 개 $)=0.05$ 를 만족하는 $t($ 개 $)$ 을 구 $ X \geq t($ 개 $)=0.05$ 는	n 10 ν
P(X	$ \geq t(\eta) = P(X \geq t(\eta)) = E \times X \leq -t(\eta) = 2P(X \geq t(\eta)) = 0.05$	
이므로 P()	K ≥ t(++))=0.025이다. 따라서 부록의 t-분포표에 의하여	
	t(10) = 2.228	
이다. 즉, 횢 말해서	부률 $\alpha (0 < \alpha < 1)$ 값에 대하여 오른쪽 꼬리 확률이 α 인 값 $t_{\alpha} ({\bf *})$, 다시 ${m \nu}$	
	$P(T_n \ge t_\alpha(\mathbf{r})) = \alpha \text{EL} P(T_n \le t_\alpha(\mathbf{r})) = 1 - \alpha$	
을 만족하는 에 대칭이므	: 값 $t_{\alpha}(\mathbf{m})$ 들을 t -분포표에서 찾을 수 있다. 특히 t -분포는 $\mu=0$ 인 축	
243	$P(T_n \ge t_{\alpha}(\mathbf{r})) = P(T_n \le -t_{\alpha}(\mathbf{r})) = \alpha$ $P(T_n \ge t_{\alpha/2}(\mathbf{r})) = \alpha \frac{2\alpha}{\nu}$	n
	$-t_o(\pi)$ $t_o(\pi)$ $t_o(\pi)$	ν
이며 추정과	가설검정에서 자주 사용된다.	

제4장 결	합확률분포	
베이지	수정	이유
40	\bigcirc $Y = y$ 에 대한 X 의 조건부기댓값	0
	$\mathbb{E}(X \mid Y = y) = \sum_{x=0}^{\infty} x \times f_{X \mid Y}(x \mid y)$	x_1 ,
	21	y_1
	$\bigcirc X = x$ 에 대한 Y 의 조건부기댓값	
	$\mathbb{E}(Y X=x) = \sum_{y=0}^{\infty} y \times f_{Y X}(y x)$	
	③ 이산이변량확률변수의 조건부분산: 두 이산확률변수 X와 Y의 결합확률질량함수가	
	$f(x, y)$ 이고 조건부확률질량함수가 각각 $f_{X Y}(x y)$ 와 $f_{Y X}(y x)$ 일 때,	
	\bigcirc $Y = y$ 에 대한 X 의 조건부분산	
	$V(X Y = y) = E(X^2 Y = y) - \{E(X Y = y)\}^2$	
	$= \sum_{x=0}^{\infty} \frac{x^2}{x_1} \times f_{X Y}(x y) - \left\{ \sum_{x=0}^{\infty} \frac{x}{x_1} \times f_{X Y}(x y) \right\}^2$	
	$\bigcirc X = x$ 에 대한 Y 의 조건부분산	
	$V(Y X=x) = E(Y^2 X=x) - \{E(Y X=x)\}^2$	
	$= \sum_{y=0}^{\infty} y^{2} \times f_{Y X}(y x) - \left\{ \sum_{y=0}^{\infty} y \times f_{Y X}(y x) \right\}^{2}$	
:62	상 시행할 때 나오는 실험에서 변수들이 두 개 이상 결합된 확률변수를 결합확률변 수	_
	(jointly random variable)라 하고 이 결합확률변수에 대한 확률분포를 결합확률분포	
74	1 1	
	$\frac{1}{4} \times \frac{1}{8}$	
	$P(X=0, Y=0) = \frac{1}{8} \neq \frac{0 \times 0}{1} = P(X=0) \times P(Y=0)$	
	이므로 두 이산화률변수 X와 Y는 서로 확률적으로 독립이 아니다.	
.77	예제 4.7 두 연속확률변수 X, Y의 연속결합누적분포함수가	y
	1	
	$F(x, y) = \begin{cases} 0, & x < 0, y < 0 \\ (1 - e^{-x})(1 - \frac{1}{y}), & 0 \le x < \infty, 1 \le y < \infty \end{cases}$	
	$(1-e^{-x})(1-\frac{1}{y}), \ 0 \le x < \infty, \ 1 \le y < \infty$	
187	이고 $u = x + y$, $v = x - y$ 의 역함수는	
	**	y
	$x = \frac{1}{2}(u+v), \ y = \frac{1}{2}(u-v)$	
	이다. 그러므로 변환에 의한 <i>U</i> , <i>V</i> 의 영역 <i>A</i> 는	
	$A = \{(u, v) \mid 0 < u + v < 2, \ 0 < u - v < 2\}$	

294		x
	예제 4.18 두 연속확률변수 X 와 Y 는 독립이고, X 와 Y 의 확률밀도함수가 각각	t
	$f(\mathbf{x}) = \begin{cases} 2\mathbf{x} & 0 \leq \mathbf{x} \leq 1 \\ 0, 그 외의 경우$	
	일 때, $\mathrm{E}\left(X+Y\right)$ 을 구하시오.	
	$lacksymbol{\triangleright}$ 물이 두 연속확률변수 X 와 Y 가 독립이고 각각은 확률밀도함수 $f(\mathbf{z})$ 를 가지므로 X 와 Y 의	
298	에제 4.19 두 연속확률변수 X와 Y는 독립이고, X와 Y의 확률밀도함수가 각각	$egin{array}{c} x \ t \end{array}$
	$f(\mathbf{x}_{\mathbf{t}}) = \begin{cases} 2\mathbf{x}_{\mathbf{t}} & 0 \le \mathbf{x}_{\mathbf{t}} \le 1\\ 0, 그 외의 경우. \end{cases}$	
	일 때, $\mathrm{E}(X+Y)=\mathrm{E}(X)+\mathrm{E}(Y)$ 를 이용하여 $\mathrm{E}(X+Y)$ 를 구하시오. 더불어 $\mathrm{V}(X+Y)$ 을 구하시오.	
	◇ 물이 두 연속확률변수 X와 Y가 독립이고 각각은 확률밀도함수 f(☎)를 가지므로 X와 Y의	
304	이다. 특히 특히 X 와 Y 가 독립이면 $Cov(X,\ Y)=0$ 이므로 $\rho(X,\ Y)=0$ 이다. 다	,
312		0
	$\begin{split} & \operatorname{E}(X \mid Y = y) = \sum_{x = \theta}^{\infty} \underset{\boldsymbol{x}_{1}}{x} \times f_{X \mid Y}(x \mid y) \\ & \operatorname{V}(X \mid Y = y) = \operatorname{E}(X^{2} \mid Y = y) - \{\operatorname{E}(X \mid Y = y)\}^{2} \end{split}$	x_1
	$= \sum_{x=0}^{\infty} x^2 \times f_{X\mid Y}(x\mid y) - \left\{ \sum_{x=0}^{\infty} x \times f_{X\mid Y}(x\mid y) \right\}^2$	
313		0
	$\mathbb{E}(Y X=x) = \sum_{y=0}^{\infty} y \times f_{Y X}(y x)$	y_1
	$V(Y X=x) = E(Y^2 X=x) - \{E(Y X=x)\}^2$	
	$= \sum_{y = \theta}^{\infty} y^2 \times f_{Y X} (y \mid x) - \left\{ \sum_{y = \theta}^{\infty} y \times f_{Y \mid X} (y \mid x) \right\}^2$	

211		
314	$\mathbb{E}\left(Y X=0\right) = \sum_{y=0}^{\mathbf{g}} y \times f_{Y X}\left(y 0\right) = 1 \times \frac{1}{2} + 2 \times \frac{1}{4} = 1$	
	$V(Y X=0) = E(Y^2 X=0) - \{E(Y X=0)\}^2$	
	$=\sum_{y=0}^{23}y^2\times f_{Y\mid X}(y\mid 0)-\left\{\sum_{y=0}^{23}y\times f_{Y\mid X}(y\mid 0)\right\}^2$	
	$= 1^{2} \times \left(\frac{1}{2}\right) + 2^{2} \times \left(\frac{1}{4}\right) - (1)^{2} = \frac{1}{2}$	
	이다. $X=1$ 일 때 Y 의 조건부기댓값 $\mathrm{E}(Y X=1)$ 과 조건부분산 $\sqrt{(Y X=1)}$ 은 각각	
	$E(Y X=1) = \sum_{y=0}^{23} y \times f_{Y X}(y 1) = 1 \times \frac{1}{4} + 2 \times \frac{1}{2} = \frac{5}{4} + \frac{3}{4} = 2$	
	$V(Y X=1) = E(Y^2 X=1) - \{E(Y X=1)\}^2$	
	$= \sum_{y=0}^{23} y^2 \times f_{Y \mid X}(y \mid 1) - \left\{ \sum_{y=0}^{23} y \times f_{Y \mid X}(y \mid 1) \right\}^2$	
	$= 1^{2} \times \left(\frac{1}{4}\right) + 2^{2} \times \left(\frac{1}{2}\right) - \left(\frac{5}{4}\right)^{2} = \frac{111}{162}$	
	이다. 3 ² X 1 -	
323	11 두 연속확률변수 X 와 Y $(0 \le X \le 2, \ 0 \le Y \le 2)$ 에 대한 결합분포함수가	
	F(x, y) = kxy(x+y)	
	일 때, 확률변수 X 의 주변 분포함수와 두 확률변수 X 와 Y 의 결합확률밀도함수를 구하시오.	
323	12 두 연속확률변수 X와 Y는 독립이고, X와 Y의 확률밀도함수가 각각	
	$f(x) = $ $\begin{cases} 2x, & 0 \le x \stackrel{\leq}{\longleftarrow} 1 \\ 0, & 그 외의 경우, \end{cases} f(y) = \begin{cases} 2y, & 0 \le y \stackrel{\leq}{\longleftarrow} 1 \\ 0, & 그 외의 경우 \end{cases}$	
	일 때, P(X+Y≤1)를 구하시오.	
324	19 두 이산확률변수 X , Y 의 결합확률질량함수 $f(x, y)$ 가	
	f(0, 0) = 0.4, f(0, 1) = 0.2, f(1, 0) = 0.1, f(1, 1) = 0.3	
	0.2 일 때, $X=1$ 에 대한 Y 의 조건부 확률과 조건부기댓값 $E(Y X=1)$ 를 구하시오.	

	03 두 연속확률변수 X와 Y의 결합누적분포함수가
	$\begin{cases} 0, & x < 0, y < 0 \end{cases}$
	(x, y) $\begin{cases} \frac{x^2y^2}{8} - \frac{x^4}{16}, & 0 \le x \le y < 2 \end{cases}$
325	$\frac{F(x, y)}{Fx, y} = \begin{cases} \frac{x^2}{2} - \frac{x^4}{16}, & 0 \le x \le 2 < y \end{cases}$
	$\frac{y^4}{16}$, $x \ge y$, $0 \le y < 2$
	$1, \qquad x \geq 2, \ y \geq 2$
	일 때, $P\left(\frac{1}{2} \le X \le \frac{3}{2}\right)$ 와 확률변수 $Z = Y - X$ 에 대한 확률밀도함수 $g(z)$ 를 구하시오.

제5장 -	표본분포	
페이지	수정	이유
334	6 체비쇼프의 법칙(Chebyshev's rule) 어떤 자료의 Z -점수를 Z 라 할 때 주어진 자료 중 적어도 $\left(1-\frac{1}{k^2}\right) \times 100\%$ 의 자료가 $ Z < k$ 에 위치 (단, k>1)	가
	$rac{f S}{f T}$ 모집단에 대한 표본평균 \overline{X} 의 분포 $\overline{X}\sim \mathrm{N}\Big(\mu,rac{\sigma^2}{n}\Big)$	가
337	한다. 기술통계학단 측정이나 실험에서 수집한 자료(data)의 정리, 요약, 해석, 표현 등	
346	(명) 운동복 크기 10 9 8 7 6 5 4 3 2 1 0 750- 80 85 90 95 100 105(호) 75	
349	$(n+1)\frac{3}{4}$ 번째 자료값이다. 만약 $\frac{Q_1}{4}$ - $\frac{Q_2}{4}$ 정수가 아니면 사분위수는 인접한 두 사동분한 위치가 개 값을 사용하여 보간법으로 구한다.	

352	따라서 신생아의 키와 엄마의 키 각각의 변동계수는	
	$\frac{\sqrt{22.4}}{47} = 0.10, \ \frac{\sqrt{22.8}}{164} = 0.029$	
355	$Z_{1\text{spd}} = \frac{170-156}{14} = 1, \ Z_{2\text{spd}} = \frac{170-167}{10} = 0.3, \ Z_{3\text{spd}} = \frac{170-173}{6} = -0.5$	
	이다. 따라서 각 학년의 평균 키와 비교하여 키 170cm는 1학년>2황년>3황년 순으로 상대적으로 큰 키이다.	
	이러한 Z -점수의 성질을 체비쇼프의 법칙(Chebyshev's rule)이라 한다. 즉, 어떤 자료의 Z -점수를 Z 라 할 때, $ Z < k$, 즉 $-k < Z < k$ 일 확률이 $1 - \frac{1}{k^2}$ 이다.단, k>1이다.	가
360	시간 X 에 대한 평균, 분산, 표준편차를 각각 모평균 μ , 모분산 σ^2 , 모표준편차 σ 라 한다. 그리고 대도시 순학교육과 학생 권함을 표본이고, 이들로부터 확인한 학습 시간 X 에 대한 평균, 분산, 표준편차는 각각 표본평균 \overline{X} , 표본분산 S^2 , 표본표준편	
361	이다. 이 결과를 모평균 μ , 모분산 σ^2 과 비교하면 ${\rm E}(\overline{X})=3=\mu,\ {\rm V}(\overline{X})=1=\frac{\sigma^2}{2}$	
364	정규모집단에 대한 표본평균의 분포 평균이 μ 이고 분산이 σ^2 인 정규분포를 따르는 모집단에서 크기 n 인 표본 X_1, X_2, \cdots , 전규분포를 따르는 ∞ 모평균이 ω 0 모평균이 ω 2 모평균이 ω 2 모평균이 ω 3 모평균이 ω 4 모집단에서 추출한 ω 5 ω 5 모평균의 기댓값 ω 5 모평균의 기댓값의 덧셈 법칙에 의하여	가
	에를 들어, 모평균이 5 , 모표준편차가 2 인 모집단에서 크기가 10 인 표본을 임의 추출할 때, 표본평균 \overline{X} 의 평균은 5 , 분산은 $\frac{2}{5}$, 표준편차는 $\frac{\sqrt{10}}{5}$ 이다.	

372	N(0, 1)를 따른다. 따라서 구하는 확률은			
	$P(\hat{p} \le 0.15) = P\left(\frac{\hat{p} - 0.1}{\sqrt{0.0003}} \le \frac{0.15 - 0.1}{\sqrt{0.0003}}\right) = P(\hat{p} \le 0.15) = P(\hat{p} \le 0.15$	$Z \le 2.8$	89)	
	$= 0.5 + P(0 \le Z \le \frac{2.8}{2.89}) = 0.5 + 0.49$	981 = 0.	9981	
	이다.			
373	$\begin{split} \mathbf{E}(X) &= \sum_{x=0}^{\infty} x \times \mathbf{P}(X=x) = \sum_{x=0}^{\infty} x \times f(x) = \sum_{x=0}^{a^{-}} x \times f(x) + \\ &\geq \sum_{x=a}^{\infty} x \times f(x) \geq \sum_{x=a}^{\infty} a \times f(x) = a \sum_{x=a}^{\infty} f(x) = a \times \mathbf{P}(x) + \\ &> \mathbf{C}(X) = \sum_{x=0}^{\infty} x \times f(x) \geq \sum_{x=a}^{\infty} a \times f(x) = a \times \mathbf{P}(x) = $		$\langle f(x) \rangle$	
379	12 042 2011 121 210 020 77 170 470			m
	13 S수학 학원에서 일하는 강사의 일주일 근무 시간은 평균이	z	$P(0 \le Z \le z)$	
	$^{\mu}_{m}$ 시간, 표준편차가 5시간인 정규분포를 따른다고 한다. 이	0.5	0.1915	
	학원에서 일하는 강사 중에서 임의추출한 36명의 일주일 근	1.0	0.3413	
	무 시간의 표본평균이 38시간 이상일 확률을 구한 값이	1-5	0.4332	
	1 16 1 -6 06 1 00 16 106 166 16 16 16 16 16 16 16 16 16 16 16 1			l

데6장 통	취직 추정과 가설검정	
이지	수정	이유
90	모평균의 t -분포 검정 모분산 σ^2 이 <mark>알려져져 않진 왕을 또는</mark> 모집단으로부터 뽑은 표본의 크기 n 이 작은 경우 $(n < 30)$ 의 모평균 μ 에 대한 가설검정 (단, α 는 유의수준, μ_0 는 모평균 μ 에 대한 가설의	
91	18 서로 독립인 두 모평균의 정규분포 검정 모분산이 알려져 있지 않더라도 각 서로 독립인 두 모집단 X_1 과 X_2 각각의 모분산 σ_1^2 과 σ_2^2 이 알려져 있는 경우 또는 두 모 집단으로부터 뽑은 각각의 표본의 크기 n_1 과 n_2 가 큰 경우 $(n_1,\ n_2\geq 30)$ 의 두 모평균	가
	서로 독립인 두 모평균의 t -분포 검정 서로 독립인 두 모집단 X_1 과 X_2 각각의 모분산 σ_1^2 과 σ_2^2 이 알려 <mark>지지 않으면서</mark> 모집단으로부터 뽑은 표본의 수간 작은 경우 $(n_1,\ n_2<30)$ 이면서 두 모분산이 같은 경우 n_1 과 n_2 가	

398	<	ni	
	이다. 이때, 모분산 σ가 미지이므로	표본표준편차 S 로 대신하 <mark>여</mark> 표본평균 \overline{X} 의 표	
	준오차는		,
		6	1
	SE	$E(\overline{X}) = \frac{S}{\sqrt{n}}$	
		V 10	
	이다. 그리고 표본비율 p 의 표준으로	p에 대한 불편추정량이고 표준오차는 는	가
	$SE(\hat{p}) = $	$V(\hat{p}) = \sqrt{\frac{p(1-p)}{p}}$	
	이다. \overline{X} 이처럼 표본평균 \overline{X} , 표본분산	S^2 , 표본비율 \hat{p} 은 다른 어떤 불편추정량보다	
	표준편차가 작은 유효추정량이다.		
	예제 6.2 모평균 μ 와 모분산 σ^2 이 일	라리지지 않은 모집단에서 확률표본 X_1, X_2 를 추출하였다.	
	모수 μ의 추정량	<u> </u>	
399	MITH CO		
	메세 6.3 모평균 μ 와 모분산 σ^2 이 역	알려지지 않은 모집단에서 확률표본 X_1,X_2 를 추출하였	
	다. 모평균 μ의 추정량을	각각 역의	
404			
	오차한계 e	신뢰구간	
	, αι- σ	Ψ α. σ	
	$1.645 \frac{\sigma}{\sqrt{n}}$	$\frac{\overline{X} \pm 1.645}{\sqrt{n}} \frac{\sigma}{\left[\overline{X} - 1.645 \frac{\sigma}{\sqrt{n}}, \overline{X} + 1.645 \frac{\sigma}{\sqrt{n}}\right]}$	
	$1.96 \frac{\sigma}{\sqrt{n}}$ $\mu =$	$\frac{\overline{X} \pm 1.96 \frac{\sigma}{\sqrt{n}}}{\sqrt{n}} \left[\overline{X} - 1.96 \frac{\sigma}{\sqrt{n}}, \overline{X} + 1.96 \frac{\sigma}{\sqrt{n}} \right]$	
	-		
	$2.58 \frac{\sigma}{\sqrt{n}}$ μ	$\overline{X} \pm 2.58 \frac{\sigma}{\sqrt{n}} = \left[\overline{X} - 2.58 \frac{\sigma}{\sqrt{n}}, \overline{X} + 2.58 \frac{\sigma}{\sqrt{n}} \right]$	
	√n	Vn	
405	수면시간(에 대한 인고	
		에 대한 부터 주출한 표본의 평균이 $X=5$, 모분산은 $\sigma^2=1$, 표본	
	의 크기는 n = 100(≥ 30)이.	므로 표본평균 \overline{X} 의 표준오차는 $\frac{\sigma}{\sqrt{n}} = \frac{1}{10}$ 이다. 그리고	
110	and and the state of the state	\sqrt{n} 10	
410	$S^2 = \frac{1}{15} \sum_{k=1}^{16} (X_k - \overline{X})$)2	
	$S = \frac{15}{15} \sum_{k=1}^{\infty} (A_k - A_k)$	′	
	$-\frac{1}{2}((5-6)^2+(5-6)^2)$	$5 - 6\frac{12}{5} + \cdots + (6 - 6\frac{12}{5}) = 4.8$	
	$=\frac{15}{15}((3-6)+(3)$	7-05 + + (0-05 / - 4.8	
	이다. 그리고 표본의 크기 $n=16$ 이므	로 자유도가 15인 t−분포를 사용하면	
1		1	

415		
	▶ 물이 모분산 σ²이 주어져있지 않으며 표본의 크기도 10(<30)으로 작으므로 모분산을 표본분산으로 대신하여 자유도 9인 t-분포에 따라 표본의 크기를 구한다. 자유도 9인 t _{0.05} = 1.833이고, 표본표준편차 S = 2, d = 1이므로 t _{0.05} (9)	,
423	이다. 따라서 임의의 양수 α $(0<\alpha<1)$ 에 대하여 T 의 확률은 $P\left(-t_{\alpha/2}(\frac{n-1}{n_1+n_2-2})\leq T\leq t_{\alpha/2}(\frac{n-1}{n_1+n_2-2})\right)=1-\alpha$	
424	이다. 따라서 $t_{0.1/2}(27) = 1.703$ 이므로 t -분포에 의한 90% 신뢰구간은 $\left[\left(\overline{X} - \overline{Y}\right) - t_{\alpha/2}(n_1 + n_2 - 2) S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\right],$ $\left(\overline{X} - \overline{Y}\right) + t_{\alpha/2}(n_1 + n_2 - 2) S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\right]$ $= \left[\left(10 - 8\right) - 1.703 \times 2.68 \sqrt{\frac{1}{17} + \frac{1}{10}}\right], (10 - 8) + 1.703 \times 2.68 \sqrt{\frac{1}{17} + \frac{1}{10}}\right]$ $= \left[0.18, \ 3.82\right]$	
428	품을 개발한 연구팀은 신제품이 기존의 제품보다 성능이 더 좋다고 주장할 수 있어 며, 어떤 사회학자는 30대와 40대에서 임금의 차이가 난다고 주장할 수 있고, 철근용한계, 즉 유의수준(significant level, α)을 미리 정해놓고 그 기준에 따라 가설의 채택(not reject)이나 기각(reject)을 결정한다.	
431	 기각역 구하기: 유의수준 α에 대한 검정통계량의 기각역을 구한다. 검정통계량의 관측값 구하기: 표본으로부터 검정통계량의 값을 구한다. 	가
436	모분산 σ^2 이 알려 <mark>져 있지 않을</mark> 모는 모집단으로부터 뽑은 표본의 크기 n 이 작은 경우 $(n < 30)$ 의 모평균 μ 에 대한 가설검정(단, α 는 유의수준, μ_0 는 모평균 μ 에 대한 가설의 주장값), \overline{X} 는 표본평균, S는 표본표준편차)	/ 가
438	 ⑤ 결론 내리기 김정통계량의 관측값이 기각역에 속하지 않으므로 유의수준 α = 0.05에서 귀무가설 Η₀을 기각할 수 없다. 즉 L사의 새로운 냉장고의 평균월소비전력량은 기존 양문형 냉장고 중 평균월소비전력량이 최저인 제품보다 낮다고 할 수 없다. 과 비교해 통계적으로 유의하게 낮다고 할 수 없다. 	

439	1 69A 1 69A	
	$\alpha = 0.05$ -1.624 -1.883	
442	서로 독립인 두 모집단 X_1 과 X_2 각각의 모분산 σ_1^2 과 σ_2^2 이 알려져 있는 경모분산이 알려져 있지 않더라도 우 또는 \sqrt{r} 모집단으로부터 뽑은 각각의 표본의 크기 n_1 과 n_2 가 큰 경우 $(n_1,\ n_2\geq 30)$ 의 두 모평균 μ_1 과 μ_2 에 대한 가설검정 (단, α 는 유의수준) $\overline{X_1}$ 와 $\overline{X_2}$ 는 두 모집단 각각의 표본평균. S_1^2 과 S_2^2 은 표본분산)	가
443		가
444	 ▶ 물에 두 모집단의 분산 σ²이 알려지지 않지만 표본의 크기 n₁ = 600(≥ 30)이고 n₂ = 400(≥ 30)이므로 표본표준편차를 이용하여 정규분포 검정을 한다. 그리고 5월 모의고사의 교과교육론 점수의 모평균에 참여한 600명의 평균을 μ₁, 6월 모의고사에 참여한 400명의 평균을 μ₂라 하자. ① 가설 설정하기 □ 가설 설정하기 □ 대₁ = μ₂ □ 표본평균을 ፲਼, ፲;라 하자. 	/ 가
445	석록 독립인 두 모집단 X_1 과 X_2 의 분산이 알려 <mark>져 있잖았기다보는</mark> 두 모집단으로 함은 표본의 수가 적은 상황 $(n_1, n_2 < 30)$ 에서 두 모분산이 동일하다고 전제할수 있는 경우, 즉 $\frac{30}{\sigma_1 - \sigma_2}$ 합동표본분산(pooled sample variance)을 사용	
445	저로 독립인 두 모집단 X_1 과 X_2 각각의 모분산 σ_1^2 과 σ_2^2 이 알려 <mark>지지 않은 경우 또는</mark> 두 모집단으로부터 뽑은 표본의 수가 작은 경우($n_1, n_2 < 30$)이면서 크기 n_1 과 n_2 가 두 모분산이 같은 경우에 두 모평균 μ_1 과 μ_2 에 대한 기원급단경 (단, α 는 유의수 준, S_1^2 과 S_2^2 는 두 모집단 X_1 과 X_2 각각의 표본분산) ① 귀무가설 ② 대립가설	/ 가
448	슷한 조건의 대상들을 짝을 지어 두 가지 처리를 한 결과를 살펴보는 것을 대응비교 (paried comparison, 또는 짝비교)라 한다.	

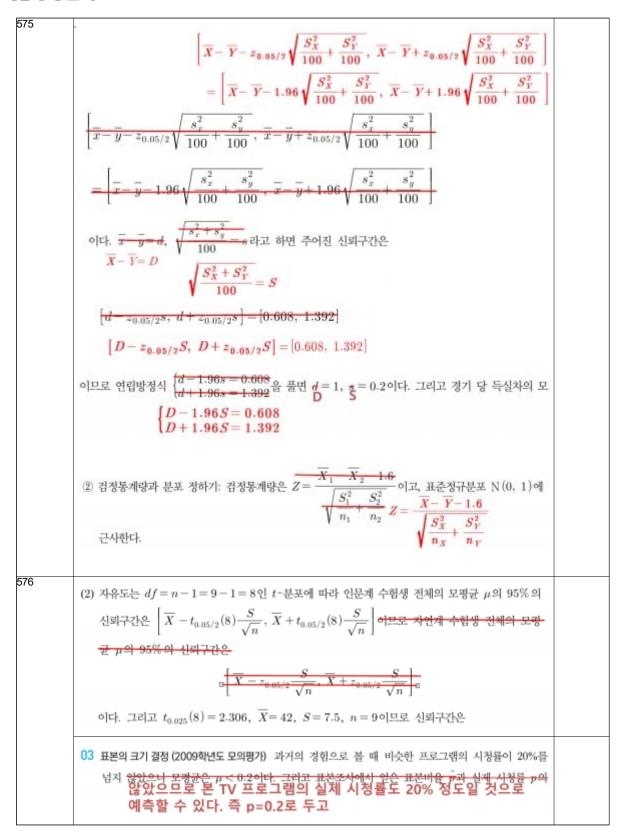
450	 ▶ 물이 서로 대응인 표본이고 표본의 크기 n = 40(≥ 30)이므로 서로 대응인 두 모평균의 정규분포 검정을 한다. 이때, 다이어트 약을 복용하기 전의 몸무게와 약을 복용한 후의 ① 가설 설정하기 몸무게의 모평균을 각각 μ₁. μ₂라 하고. μ₁ - μ₂의 평균을 D. μ₁ - μ₂의 표준편자를 Sp라 하자. 	가
452	▶ 풀이 서로 대응인 표본이고 표본의 크기가 n = 20(<30)이므로 서로 대응인 두 모평균의 t-분포 검정을 한다. 이때, 첨가제를 사용 전 X,과 사용 후 (전비의 모평균을 각각 µ₁, µ₂라하자.	
458	9 05 A대학 학생의 주당 모바일 게임 시간을 알아보고자 임의로 10명을 추출하여 조사한 결과가 다음과 같다. 모바일 게임 시간이 정규분포를 따른다고 가정할 때, A대학 학생의 주당 모바일 게임 시간의 평균과 분산에 대한 충성값을 구하시오. 10 10 13 14 15 15 18 20 21	
459	09 제주도 해풍을 맞고 자란 고당도 초당 옥수수의 평균 길이를 조사하기 위해 임의로 25개를 추출하여 길이를 조사한 결과, 평균 15cm, 표준편차 1cm였다. 제주 초당 옥수수의 평균 길이에 대한 90% 신뢰구간을 구하시오. (단, Z가 표준정규분포를 따르는 화률변수일 때, P(Z ≤ 1.645) = 0.95, P(Z ≤ 1.96) = 0.975, P(Z ≤ 2.576) = 0.995이다.) (단, t가 T-분포를 따르는 확률변수일 때, t _{0.05} (24) = 1.711, t _{0.05} (25) = 1.708이다.)	
464	10 어떤 축구 리그에서 경쟁하는 구단의 경기 당 득점 수 X , 실점 수 Y 는 서로 독립이며, 각각은 모수가 λ_x , λ_y 인 푸아송분포를 따른다고 한다. 이 구단의 100 경기의 리그 기록을 임의로 추출하여 경기 당 기대 득실차 $\lambda_x - \lambda_y$ 의 95% 근사 신뢰구간을 구했더니 $(0.608, 1.392)$ 이었다. (단, 독점차는 '득점 수-실점 수'로 정의하며, λ_x , λ_y 는 알려지지 않은 값이다.)	

떼이지	수정	이유
70		フ
	02 한글 문서 10page가 대략 10MB이면 도영군은 각각 200MB, 400MB, 800MB, 1600MB, 3200MB	
	인 5개의 파일을 갖고 있는 것이다. 그리고 이 5개의 파일은 모두 6200MB이므로 8G USB 메모리	
	GB	
74		
	15 S대학교의 학생 중에서 임의로 선택한 한 학생이 1인 미디어 방송을 운영한 경험이 있는 학생인 사	
	건을 A , 남학생인 사건을 B 라 하면, 구하려는 확률은 $P(A)$ 이다. 우선 이 대학교의 남학생이	

405		
495	19 확률변수 X 의 구간이 $\stackrel{\textbf{0}}{\longrightarrow}$ $< x < 1$ 이므로 새로운 확률변수 $Y = X^2$ 의 구간은 $0 \le Y < 1$ 이다.	
	그러므로 $0 \le y < 1$ 인 Y 의 값 y 에 대하여 Y 의 분포함수 $G(y)$ 는	
	$G(y) = P(Y \le y) = P(X^2 \le y) = P(-\frac{0}{\sqrt{y}} \le X \le \sqrt{y}) = \int_{-\frac{1}{2\sqrt{y}}}^{\sqrt{y}} f(x)dx$	
	$= \int_{-\sqrt{y}}^{\sqrt{y}} \frac{1}{2} dx = \frac{1}{2} \sqrt{y}$	
	이다. 따라서 $0 < y < 1$ 에 대하여 확률변수 Y 의 확률밀도함수 $f(y)$ 는	
	$f(y) = \frac{dG(y)}{dy} = \frac{1}{4^{\frac{2}{3}\sqrt{y}}}$	
495	이다.	
	20 확률변수 X 의 구간이 $x \ge 0$ 이므로 확률변수 $Y = e^X$ 의 구간은 $Y \ge 1$ 이다. 따라서 $y \ge 1$ 인 확률변수 Y 의 임의의 값 y 에 대하여 확률변수 Y 의 분포함수 $G(y)$ 는	
	20 새로운 확률변수 $y = u(x) = 8x^3$ 은 구간 $0 < x < 1$ 에서 구간	
	0 < y < 8로 의 연속이며 강증가 함수이다. 그리고 $0 < y < 8$ 에 대하여	
	그 역함수는 $x = u^{-1}(y) = \left(\frac{y}{8}\right)^{1/3}$ 이므로	
	$\frac{d}{dy}u^{-1}(y) = \frac{1}{24}\left(\frac{y}{8}\right)^{-2/3}$	
	이다. 그러므로 $0 < y < 8$ 에 대하여 Y 의 확률밀도함수 $g(y)$ 는	
	$g(y) = f(\sqrt{y}) \times \left \frac{d}{dx} \sqrt{y} \right = 2 \left(\frac{y}{8} \right)^{1/3} \times \frac{1}{24} \left(\frac{y}{8} \right)^{-2/3} = \frac{1}{6} y^{-1/3}$	
	이다.	
500	이고	
	$\left \frac{d}{dy}\left(u_2^{-1}(y)\right)\right = \left \frac{d}{dy}(y)\right = 1 = 1$	
	이다. 첫째와 둘째의 경우는 $0 \le y < \frac{1}{3}$ 을 만족하고, 따라서 새로운 확률변수 Y 의 확률밀도	
501	분포의 누적분포함수 $F(x_i)$ 는	
	$F(x_i) = P(X_i \overset{\leq}{\prec} x_i) = \int_{-\infty}^{x_i} f(t) dt = \int_{0}^{x_i} 1 dt = x_i \ (i = 1, 2, 3)$	
	이며, 이때, 세 수 x_1 , x_2 , x_3 의 최댓값인 확률변수 X 는 $\max\{X_1,X_2,X_3\}$ 이고 각각은 독립이	
	므로, 확률변수 X 의 누적분포함수 $F(x)$ 는	
	$F(x) = P(X \le x) = P(\max\{X_1, X_2, X_3\} \le x) = P(X_1 \le x, X_2 \le x, X_3 \le x)$	
	$=\operatorname{P}\left(X_{1}\leq x\right)\times\operatorname{P}\left(X_{2}\leq x\right)\times\operatorname{P}\left(X_{3}\leq x\right)=x\times x\times x=x^{3}$	
502	이다. 우선 확률값을 다 더하면 1이므로	
	$1 = y + \frac{1}{3} + x \ (0 \le x \le 1, \ 0 \le y \le 1)$	

503	(1) (1)2 (1)3 (1)1	
	$E(X) = 1\left(\frac{1}{2}\right) + 2\left(\frac{1}{2}\right)^2 + 3\left(\frac{1}{2}\right)^3 + \dots + n\left(\frac{1}{2}\right)^n + \dots$	
	$-\frac{1}{2}E(X) = -\left(\frac{1}{2}\right)^2 + 2\left(\frac{1}{2}\right)^3 + \cdots + (n-1)\left(\frac{1}{2}\right)^n + \cdots$	
	$\frac{1}{2}E(X) = \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^3 + \dots = 1$	
	$E(X^2) = 1\left(\frac{1}{2}\right) + 4\left(\frac{1}{2}\right)^2 + 9\left(\frac{1}{2}\right)^3 + \cdots$	
	$-\frac{1}{2}E(X^2) = -\left(\frac{1}{2}\right)^2 + 4\left(\frac{1}{2}\right)^3 + \cdots$	
	$\frac{1}{2} \mathbb{E}(X^2) = \frac{1}{2} + 3\left(\frac{1}{2}\right)^2 + 5\left(\frac{1}{2}\right)^3 + \dots = \sum_{k=1}^{\infty} (2k-1)\left(\frac{1}{2}\right)^k$	
505	이다. 그리고 5회의 시합을 치루면 적어도 한 팀은 3회 이상 이기므로 시합 횟수가 5회 이상일 때 에도	
	P(X=x)=0	
509	$\frac{20}{40}$ 08 $\frac{20}{40}$ 08 상자에서 8개의 나사를 선택하였을 때 정품의 개수를 X 라 하면 이 확률변수 X 는 초기하분포 $HG(20, 15, 8)$ 를 따른다. 따라서 8개의 나사로 조립한 선풍기가 작동할 확률은	
520	$0.096 = P(X \ge C) = P\left(\frac{X - 55}{8} \ge \frac{C - 55}{8}\right) = P\left(Z \ge \frac{C - 55}{8}\right)$ $= 0.5 - P\left(0 \le Z \le \frac{C - 5 \cdot 5}{8}\right) = 0.5 - 0.404$	
	즉, $P\left(0 \le Z \le \frac{C - \frac{5.5}{8}}{8}\right) = 0.404$ 이다. 따라서 $\frac{C - 55}{8} = 1.3$ 이고 $C = 65.4$ 이다.	
524	$= (y^2 + y^2 + y^2) - 2y^3$ $= 3y^2 - 2y^3 \ (0 \le y \le 1)$ 이므로 Y의 누적분포함수는	
539		
	이다. 더불어 새로운 확률변수 $Z=X+Y$ 의 누적분포함수 $G(z)$ 는 ① $0 \le z \le 2$ 인 경우,	
	$G(z) = P(Z \le z) = \int_0^z \int_0^{z-x} \frac{1}{4} (x+2y) dy dx = \int_0^z \frac{1}{4} (z^2 - zx) dx = \frac{1}{8} z^3$	
544	이다. 따라서 확률 $P(X^2 \le Y \le X)$ 은	x
	$P(X^{2} \le Y \le X) = \int_{0}^{1} \int_{x^{2}}^{x} f(x, y) dy dx = \int_{0}^{1} \int_{x^{2}}^{1} 4xy dy dx = \frac{1}{6}$	

546		
	이다. 그리고 X의 조건부확률밀도함수	
	$f(x, 2) = P(X = x, Y = 2) = f(x, 2) = \frac{f(x, 2)}{5} = \frac{1}{5} x \times 2(1 - x + 2)$	
	$f_{X Y}(x 2) = \frac{P(X=x, Y=2)}{P(Y=2)} = \frac{f(x,2)}{f_Y(2)} = \frac{\frac{1}{5}x \times 2(1-x+2)}{\frac{1}{5}x \times 2(\frac{1}{6} + \frac{1}{2} \times 2)}$	
	√ − ∞	
	$\frac{2}{5}x(3-x)$ $\frac{2}{5}x(3-x)$ 6	
	$ \frac{\frac{2}{5}x(3-x)}{\int_{-\frac{5}{5}}^{1}\frac{2}{x(3-x)}\frac{dx}{dx}} = \frac{\frac{2}{5}x(3-x)}{\frac{7}{15}} = \frac{6}{7}x(3-x) (0 < x < 1) $	
	$-J_0 = 5 x (\delta - x) dx$ 15	
547	이다. 따라서 Z 의 확률밀도함수 $g(z)$ 는	
	AG 2 - 2	
	$g(z) = \frac{dG}{dz} \frac{(z)}{dz} = \frac{z}{4} e^{-\frac{z}{2}} (z > 0)$ olth.	
	$\frac{dG(z)}{dz}$	
548	이다. dz	
546	y4 y4	가
	Z Z	71
	2	
	z a	
	(a) (b)	
	O z z z z z z z z	
	© 영역 (0 ≤ z < 2) © 영역 (2 ≤ z < 4)	
548	0 0 1 (0 = 2 < 2)	
	$f_Z(z) = \frac{dF}{dz} \frac{1}{dz} = \begin{cases} \frac{z}{4}, & 0 < z < 2 \\ 1 - \frac{z}{4}, & 2 \le z < 4 \\ 0, & 2 \le z \le 4 \end{cases}$	
	$f_z(z) = \frac{dF}{dz} = \begin{cases} 1 & z \\ 1 & z \end{cases}$	
	$\frac{dz}{dz}$ $\left 1 - \frac{1}{4}, 2 \le z \le 4 \right $	
	<u>aF(z)</u> (0, 그 외의 경우	
549	42	
	$f_{X_1}(x) = \frac{2}{9}x - \frac{2}{9} (1 < x < 4), \ f_{X_2}(x) = \frac{2}{9}x - \frac{2}{9} (1 < x < 4)$	
	x_1 y x_1 x_2 y x_2 y y	
	이다. 새로운 확률변수 Y 에 대하여	
553	$\hat{p} = 0.2$	
	에 대하여 $Z=rac{p-0.2}{0.04}$ 는 표준정규분포 $N(0,1)$ 를 따른다. 따라서 구하는 확률	
	$P(0.19 \le \hat{p} \le 0.22) \stackrel{\circ}{\smile}$	
	(0.10 - 0.2)	
	$P(0.19 \le \hat{p} \le 0.22) \stackrel{\circ}{\leftarrow}$ $P(0.19 \le \hat{p} \le 0.22) = P\left(\frac{0.19 - 0.2}{0.04} \le \frac{\hat{p} - 0.2}{0.04}\right) = P(-0.25 \le Z \le 0.5)$	
554	12 정규분포를 따르는 확률변수 X 에 대하여 $\mathrm{P}\left(X\geq3.4\right)=\frac{1}{2}$ 이므로 확률변수 X 의 평균은 3.4 이	가
	다. 그리고 확률변수 X 의 표준편차를 σ 라 하면 $P(X \le 3.9) + P(Z \le -1) = 1$ 에서	
	(3.9-3.4) (-0.5)	
	$P(X \le 3.9) = P\left(Z \le \frac{3.9 - 3.4}{\sigma}\right) = P\left(Z \le \frac{0.5}{\sigma}\right)$ 이고, $P(Z \le -1) = P(Z \ge 1)$ 이므로	
	X = 3.4	
	$\frac{\sigma}{\sigma} = 1$,	



556		
	18 기초교양통계를 수강한 학생의 최종 점수를 X 라 할 때, 확인된 자료가 평균 $\mathrm{E}\left(X\right)=62$ 과 분산	
	$V(X) = 4 \frac{\pi}{6}$ 이므로, 체비쇼프의 부등식에 의하여 구하는 확률은	
	$ P (54 < X < 70) = 1 - P (X - 62 < 8) ≥ 1 - \frac{V(X)}{8^2} = 1 - \frac{16}{8^2} = 1 - \frac{1}{4} = \frac{3}{4} $	
557	02 n 개의 표본에 대한 표본평균 \overline{X}_n 의 분산 $V(\overline{X}_n)$ 은	
	$\sigma^{2} = \operatorname{V}\left(\overline{X}_{n}\right) = \operatorname{V}\left(\frac{X_{1} + X_{2} + \ldots + X_{n}}{n}\right) = \frac{\operatorname{V}\left(X_{1}\right) + \ldots + \operatorname{V}\left(X_{n}\right)}{n^{2}} = \frac{n\operatorname{V}\left(X_{1}\right)}{n^{2}} = \frac{\operatorname{V}\left(X_{1}\right)}{n}$	1
	이므로 $V(X)^2 \frac{V(X_1)}{2}$	
	$\mathbb{P}\left(\overline{X}_n - \mu < \epsilon\right) = \mathbb{P}\left(\overline{X}_n - \mu < \frac{\epsilon}{\sigma}\sigma\right) \ge 1 - \frac{\sigma^2}{\epsilon^2} = 1 - \frac{\mathbb{V}\left(X_1\right)^2}{n^2\epsilon^2} \frac{1}{n^2\epsilon^2}$	
	이 성립한다. π 개의 표본에 대한 표본방균 $\overline{X_n}$ 의 분산 $V(\overline{X_n})$ 은	
	$\frac{\sigma^2 - \operatorname{V}(\overline{X}_n) - \operatorname{V}\left(\frac{X_1 + X_2 + \ldots + X_n}{n}\right) - \frac{\operatorname{V}(X_1) + \ldots + \operatorname{V}(X_n)}{n^2} = \frac{n\operatorname{V}(X_1)}{n^2} - \frac{\operatorname{V}(X_1)}{n}}{n}$	
	<중복 설명> 여만로	
	$\mathbb{P}\left(\overline{X}_n - \mu < \epsilon\right) = \mathbb{P}\left(\overline{X}_n - \mu < \frac{\epsilon}{\sigma}\sigma\right) \ge 1 - \frac{\sigma^2}{\epsilon^2} = 1 - \frac{V\left(X_1\right)^2}{n^2\epsilon^2}$	
	이 성립한다. 한편 확률의 정의에 의해 $0 \leq \mathrm{P}\left(\overline{X}_n - \mu < \epsilon\right) \leq 1$ 을 만족한다. 또한 $0 < V(X_1)$	
	$<\infty$ 이므로, 적당한 자연수 n_0 가 존재하여, $n\geq n_0$ 에 대해 $1-\frac{V(X_1)^2}{n^2\epsilon^2}>0$ 이 성립한다. 그러	
	므로 $n \geq n_0$ 에 대해 $\mathrm{P}(\overline{X}_n - \mu < \epsilon)$ 는 $\dfrac{\mathrm{V}(X_1)}{n \epsilon^2}$	
	$1 - \frac{\operatorname{V}(X_1)^2}{n^2 \epsilon^2} \leq \operatorname{P}(\overline{X}_n - \mu < \epsilon) \leq 1$	
	$\frac{V(X_1)}{n\epsilon^2}$	
558	V/V)	
	를 만족한다. 이때 n 이 무한히 커지면 $\frac{V(X_1)}{n\epsilon^2}$	
	$\lim_{n \to \infty} \left(1 - \frac{V(X_1)^2}{n^2 \epsilon^2} \right) = 1$	
	이 되어 조임 정리에 의해 $\lim \mathbb{P}\left(\overline{X}_n - \mu < \epsilon\right) = 1$ 이다.	
563		가
	$P(\overline{X} - \overline{Y} \le 320) = P(Z \le \frac{320 - 300}{10}) = P(Z \le 2),$	
	즉 $b = 2$ 이다. $ = P\left(\frac{\overline{X} - \overline{Y} - 300}{10} \le \frac{320 - 300}{10}\right) $	

564	03 임의로 뽑은 고등학교 1학년 학생 100명의 평균체중을 \overline{X} 라 하면, 평균체중 \overline{X} 의 표준편차는 표준 오차 SD 이다. 따라서 표준오차 $SE(\overline{X}) = \frac{\sigma}{\sqrt{n}}$ 를 구하면, $\sigma = 4$, $n = 100$ 이므로 $SE(\overline{X}) = \frac{\sigma}{\sqrt{n}} = \frac{4}{\sqrt{100}} = 0.4$	
569	18 두 모집단의 분산 σ^2 이 알려지지 않지만 표본의 크기 $n_1=36 (\geq 30)$ 이고 $n_2=49 (\geq 30)$ 이므로 표본표준면차 $S_1,~S_2$ 를 이용하여 정규분포 검정을 한다. 그리고 여성과 남성의 평균을 각각 $\mu_1,~\mu_2$ 라 하자. 남녀 신입생의 한달 평균용돈을	
572	03 확률이 $1-\alpha$ 인 모평균 μ 의 $100(1-\alpha)$ % 신뢰구간은 $\left[\overline{X}-z_{\alpha/2}\frac{S}{\sqrt{n}},\overline{X}+z_{\alpha/2}\frac{S}{\sqrt{n}}\right]$ 이므로로 95% 신뢰구간은 $\left[\overline{X}-z_{0.05/2}\frac{S}{\sqrt{n}},\overline{X}+z_{0.05/2}\frac{S}{\sqrt{n}}\right]$ 이다. 그리고 $z_{0.025}=1.96$, $\overline{X}=180,S=20,n=\frac{100}{49}$ 이므로 $\left[180-1.96\times\frac{20}{\sqrt{100}},180+1.96\times\frac{20}{\sqrt{100}}\right]=\left[\frac{176.08}{174.4},\frac{185.6}{185.6}\right]$ 이다.	
573	06 총 n 번의 실험에서 얻은 화학 침전물의 양의 표본평균 \overline{X} 는 정규분포 $\mathrm{N}\Big(\mu,\frac{3^2}{n}\Big)$ 을 따른다. 따라서 μ 침전물 양의 표본평균에 대한 95% 신뢰구간은 $\left[\frac{\overline{X}}{\mu}-1.96\frac{3}{\sqrt{n}},\frac{\overline{X}}{\mu}+1.96\frac{3}{\sqrt{n}}\right]$ 으로 나타낼 수 있다. 한편 $\mathrm{P}\left(\overline{X}-\mu \leq 1.2\right)\geq 0.95$ 을 만족하기 위해서는	
574	이다. $\overline{X} \qquad S_X$ (b) 100경기의 표본으로부터 얻은 경기 당 득점 수의 표본평균과 표본표준편차를 각각 $\frac{1}{2}$ 와 s_2 , 경 기 당 실점 수의 표본평균과 표본표준편차를 각각 $\frac{1}{2}$, s_y 라고 하면, 표준정규분포에 의한 경기 당 기대 득실차 $\lambda_z - \lambda_y$ 의 95% 신뢰구간은 $\frac{1}{Y}$ S_Y	

577	차이가 5% 이하, 즉 $ \hat{p}-p \le 0.05$ 가 되도록 하는 최소 표본크기 n 이 속하는 구간을 구해야 한다. 즉, $ \hat{p}-p = z_{0.05/2} \sqrt{\frac{p(1-p)}{\hat{p}(1-\hat{p})}} \le 0.05$ $\frac{\hat{p}(1-\hat{p})}{p(1-p)} \left(\frac{z_{0.05/2}}{0.05}\right)^2 \le n$ 이다. 그리고 $\hat{p}=0.2$, $z_{0.025}=1.96$ 이므로 $p=0.2$ $0.2\times0.8\times(39.2)^2=245.92\le n$	
583	[田 4] F-분포표 F _s (n, m) ロー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
585	고성은 외(2019) 고등학교 확률과 통계 교과서. 좋은책신사고. 교육부(2015). 기정 수학과 교육과정. 교육과학기술부.	가
24	$A \to Q \to B$ 의 경우의 수는 1 $A \to P \to B$ 의 경우의 수는 24 $A \to R \to B$ 의 경우의 수는 $1 \times \frac{5!}{4!} = 5$ $A \to S \to B$ 의 경우의 수는 1 이다. 따라서 합의 법칙을 이용하면 구하려는 경우 의 수는 $1 + 24 + 5 + 1 = 31$	