로그인이
필요합니다

도서를 검색해 주세요.

원하시는 결과가 없으시면 문의 주시거나 다른 검색어를 입력해보세요.

견본신청 문의
단체구매 문의
오탈자 문의

When Least Is Best: How Mathematicians Discovered Many Clever Ways to Make Things as Small 요약정보 및 구매

상품 선택옵션 0 개, 추가옵션 0 개

사용후기 0 개
지은이 Paul J. Nahin
발행년도 2003-11-24
판수 1판(2003)판
페이지 370
ISBN 9780691070780
도서상태 구매가능
판매가격 21,000원
포인트 0점
배송비결제 주문시 결제

선택된 옵션

  • When Least Is Best: How Mathematicians Discovered Many Clever Ways to Make Things as Small
    +0원
위시리스트

관련상품

  • What is the best way to photograph a speeding bullet? Why does light move through glass in the least amount of time possible? How can lost hikers find their way out of a forest? What will rainbows look like in the future? Why do soap bubbles have a shape that gives them the least area? By combining the mathematical history of extrema with contemporary examples, Paul J. Nahin answers these intriguing questions and more in this engaging and witty volume. He shows how life often works at the extremes--with values becoming as small (or as large) as possible--and how mathematicians over the centuries have struggled to calculate these problems of minima and maxima. From medieval writings to the development of modern calculus to the current field of optimization, Nahin tells the story of Dido's problem, Fermat and Descartes, Torricelli, Bishop Berkeley, Goldschmidt, and more. Along the way, he explores how to build the shortest bridge possible between two towns, how to shop for garbage bags, how to vary speed during a race, and how to make the perfect basketball shot. Written in a conversational tone and requiring only an early undergraduate level of mathematical knowledge, When Least Is Best is full of fascinating examples and ready-to-try-at-home experiments. This is the first book on optimization written for a wide audience, and math enthusiasts of all backgrounds will delight in its lively topics. 책 등에 도장이 찍혀 있습니다.
  • Preface xiii 1. Minimums, Maximums, Derivatives, and Computers 1 1.1 Introduction 1 1.2 When Derivatives Don't Work 4 1.3 Using Algebra to Find Minimums 5 1.4 A Civil Engineering Problem 9 1.5 The AM-GM Inequality 13 1.6 Derivatives from Physics 20 1.7 Minimizing with a Computer 24 2. The First Extremal Problems 37 2.1 The Ancient Confusion of Length and Area 37 2.2 Dido' Problem and the Isoperimetric Quotient 45 2.3 Steiner '"Solution" to Dido' Problem 56 2.4 How Steiner Stumbled 59 2.5 A "Hard "Problem with an Easy Solution 62 2.6 Fagnano' Problem 65 3. Medieval Maximization and Some Modern Twists 71 3.1 The Regiomontanus Problem 71 3.2 The Saturn Problem 77 3.3 The Envelope-Folding Problem 79 3.4 The Pipe-and-Corner Problem 85 3.5 Regiomontanus Redux 89 3.6 The Muddy Wheel Problem 94 4. The Forgotten War of Descartes and Fermat 99 4.1 Two Very Different Men 99 4.2 Snell' Law 101 4.3 Fermat, Tangent Lines, and Extrema 109 4.4 The Birth of the Derivative 114 4.5 Derivatives and Tangents 120 4.6 Snell' Law and the Principle of Least Time 127 4.7 A Popular Textbook Problem 134 4.8 Snell' Law and the Rainbow 137 5. Calculus Steps Forward, Center Stage 140 5.1 The Derivative:Controversy and Triumph 140 5.2 Paintings Again, and Kepler' Wine Barrel 147 5.3 The Mailable Package Paradox 149 5.4 Projectile Motion in a Gravitational Field 152 5.5 The Perfect Basketball Shot 158 5.6 Halley Gunnery Problem 165 5.7 De L' Hospital and His Pulley Problem, and a New Minimum Principle 171 5.8 Derivatives and the Rainbow 179 6. Beyond Calculus 200 6.1 Galileo'Problem 200 6.2 The Brachistochrone Problem 210 6.3 Comparing Galileo and Bernoulli 221 6.4 The Euler-Lagrange Equation 231 6.5 The Straight Line and the Brachistochrone 238 6.6 Galileo' Hanging Chain 240 6.7 The Catenary Again 247 6.8 The Isoperimetric Problem, Solved (at last!) 251 6.9 Minimal Area Surfaces, Plateau' Problem, and Soap Bubbles 259 6.10 The Human Side of Minimal Area Surfaces 271 7. The Modern Age Begins 279 7.1 The Fermat/Steiner Problem 279 7.2 Digging the Optimal Trench, Paving the Shortest Mail Route, and Least-Cost Paths through Directed Graphs 286 7.3 The Traveling Salesman Problem 293 7.4 Minimizing with Inequalities (Linear Programming) 295 7.5 Minimizing by Working Backwards (Dynamic Programming) 312 Appendix A. The AM-GM Inequality 331 Appendix B. The AM-QM Inequality, and Jensen' Inequality 334 Appendix C. "The Sagacity of the Bees" 342 Appendix D. Every Convex Figure Has a Perimeter Bisector 345 Appendix E. The Gravitational Free-Fall Descent Time along a Circle 347 Appendix F. The Area Enclosed by a Closed Curve 352 Appendix G. Beltrami 'Identity 359 Appendix H. The Last Word on the Lost Fisherman Problem 361 Acknowledgments 365 Index 367
  • 학습자료


    등록된 학습자료가 없습니다.

    정오표


    등록된 정오표가 없습니다.

  • 상품 정보

    상품 정보 고시

  • 사용후기

    등록된 사용후기

    사용후기가 없습니다.

  • 상품문의

    등록된 상품문의

    상품문의가 없습니다.

  • 배송/교환정보

    배송정보

    cbff54c6728533e938201f4b3f80b6da_1659402509_9472.jpg

    교환/반품 정보

    cbff54c6728533e938201f4b3f80b6da_1659402593_2152.jpg
     

선택된 옵션

  • When Least Is Best: How Mathematicians Discovered Many Clever Ways to Make Things as Small
    +0원