로그인이
필요합니다

도서를 검색해 주세요.

원하시는 결과가 없으시면 문의 주시거나 다른 검색어를 입력해보세요.

견본신청 문의
단체구매 문의
오탈자 문의

Information Theory and Statistics 요약정보 및 구매

상품 선택옵션 0 개, 추가옵션 0 개

사용후기 0 개
지은이 Kullback. Solomon
발행년도 1997-10-21
페이지 416
ISBN 9780486696843
도서상태 구매가능
판매가격 19,500원
포인트 0점
배송비결제 주문시 결제

선택된 옵션

  • Information Theory and Statistics
    +0원
위시리스트

관련상품

  • Highly useful text studies the logarithmic measures of information and their application to testing statistical hypotheses. Topics include introduction and definition of measures of information, their relationship to Fisher's information measure and sufficiency, fundamental inequalities of information theory, much more. Numerous worked examples and problems. References. Glossary. Appendix.
  • 1 DEFINITION OF INFORMATION 1 Introduction 2 Definition 3 Divergence 4 Examples 5 Problems 2 PROPERTIES OF INFORMATION 1 Introduction 2 Additivity 3 Convexity 4 Invariance 5 Divergence 6 Fisher's information 7 Information and sufficiency 8 Problems 3 INEQUALITIES OF INFORMATION THEORY 1 Introduction 2 Minimum discrimination information 3 Sufficient statistics 4 Exponential family 5 Neighboring parameters 6 Efficiency 7 Problems 4 LIMITING PROPERTIES 1 Introduction 2 Limiting properties 3 Type I and type II errors 4 Problems 5 INFORMATION STATISTICS 1 Estimate of I(*:2) 2 Classification 3 Testing hypotheses 4 Discussion 5 Asymptotic properties 6 Estimate of J(*,2) 7 Problems 6 MULTINOMIAL POPULATIONS 1 Introduction 2 Background 3 Conjugate distributions 4 Single sample 4.1 Basic problem 4.2 Analysis of I(*:2;ON) 4.3 Parametric case 4.4 "One-sided" binomial hypothesis 4.5 "One-sided" multinomial hypotheses 4.5.1 Summary 4.5.2 Illustrative values 5 Two samples 5.1 Basic problem 5.2 "One-sided" hypothesis for the binomial 6 r samples 6.1 Basic problem 6.2 Partition 6.3 Parametric case 7 Problems 7 POISSON POPULATIONS 1 Background 2 Conjugate distributions 3 r samples 3.1 Basic problem 3.2 Partition 4 "One-sided" hypothesis, single sample 5 "One-sided" hypothesis, two samples 6 Problems 8 CONTINGENCY TABLES 1 Introduction 2 Two-way tables 3 Three-way tables 3.1 Independence of the three classifications 3.2 Row classification independent of the other classifications 3.3 Independence hypotheses 3.4 Conditional independence 3.5 Further analysis 4 Homogeneity of two-way tables 5 Conditional homogeneity 6 Homogeneity 7 Interaction 8 Negative interaction 9 Partitions 10 Parametric case 11 Symmetry 12 Examples 13 Problems 9 MULTIVARIATE NORMAL POPULATIONS 1 Introduction 2 Components of information 3 Canonical form 4 Linear discriminant functions 5 Equal covariance matrices 6 Principal components 7 Canonical correlation 8 Covariance variates 9 General case 10 Problems 10 THE LINEAR HYPOTHESIS 1 Introduction 2 Background 3 The linear hypothesis 4 The minimum discrimination information statistic 5 Subhypotheses 5.1 Two-partition subhypothesis 5.2 Three-partition subhypothesis 6 Analysis of regression: one-way classification, k categories 7 Two-partition subhypothesis 7.1 One-way classification, k categories 7.2 Carter's regression case 8 Example 9 Reparametrization 9.1 Hypotheses not of full rank 9.2 Partition 10 Analysis of regression, two-way classification 11 Problems 11 MULTIVARIATE ANALYSIS; THE MULTIVARIATE LINEAR HYPOTHESIS 1 Introduction 2 Background 3 The multivariate linear hypothesis 3.1 Specification 3.2 Linear discriminant function 4 The minimum discrimination information statistic 5 Subhypotheses 5.1 Two-partition subhypothesis 5.2 Three-partition subhypothesis 6 Special cases 6.1 Hotelling's generalized Student ratio (Hotelling's T(2)) 6.2 Centering 6.3 Homogeneity of r samples 6.4 r samples with covariance 6.4.1 Test of regression 6.4.2 Test of homogeneity of means and regression 6.4.3 Test of homogeneity, assuming regression 7 Canonical correlation 8 Linear discriminant functions 8.1 Homogeneity of r samples 8.2 Canonical correlation 8.3 Hotelling's generalized Student ratio (Hotelling's T(2)) 9 Examples 9.1 Homogeneity of sample means 9.2 Canonical correlation 9.3 Subhypothesis 10 Reparametrization 10.1 Hypotheses not of full rank 10.2 Partition 11 Remark 12 Problems 12 MULTIVARIATE ANALYSIS: OTHER HYPOTHESES 1 Introduction 2 Background 3 Single sample 3.1 Homogeneity of the sample 3.2 The hypothesis that a k-variate normal population has a specified covariance matrix 3.3 The hypothesis of independence 3.4 Hypothesis on the correlation matrix 3.5 Linear discriminant function 3.6 Independence of sets of variates 3.7 Independence and equality of variances 4 Homogeneity of means 4.1 Two samples 4.2 Linear discriminant function 4.3 r samples 5 Homogeneity of covariance matrices 5.1 Two samples 5.2 Linear discriminant function 5.3 r samples 5.4 Correlation matrices 6 Asymptotic distributions 6.1 Homogeneity of covariance matrices 6.2 Single sample 6.3 The hypothesis of independence 6.4 Roots of determinantal equations 7 Stuart's test for homogeneity of the marginal distributions in a two-way classification 7.1 A multivariate normal hypothesis 7.2 The contingency table problem 8 Problems 13 LINEAR DISCRIMINANT FUNCTIONS 1 Introduction 2 Iteration 3 Example 4 Remark 5 Other linear discriminant functions 6 Comparison of the various linear discriminant functions 7 Problems REFERENCES TABLE I. Log(e) n and n log(e) n for values of n from 1 through TABLE II. F(p1,p2) = p1 log (p1/p2) + q1 log (q1/q2), p1 + q1 = 1 = p2 + q2 TABLE III. Noncentral X(2) GLOSSARY APPENDIX INDEX
  • 학습자료


    등록된 학습자료가 없습니다.

    정오표


    등록된 정오표가 없습니다.

  • 상품 정보

    상품 정보 고시

  • 사용후기

    등록된 사용후기

    사용후기가 없습니다.

  • 상품문의

    등록된 상품문의

    상품문의가 없습니다.

  • 배송/교환정보

    배송정보

    cbff54c6728533e938201f4b3f80b6da_1659402509_9472.jpg

    교환/반품 정보

    cbff54c6728533e938201f4b3f80b6da_1659402593_2152.jpg
     

선택된 옵션

  • Information Theory and Statistics
    +0원