로그인이
필요합니다

도서를 검색해 주세요.

원하시는 결과가 없으시면 문의 주시거나 다른 검색어를 입력해보세요.

견본신청 문의
단체구매 문의
오탈자 문의

Foundations of Statistical Natural Language Processing(1999) 요약정보 및 구매

상품 선택옵션 0 개, 추가옵션 0 개

사용후기 0 개
지은이 Manning and Christopher
발행년도 1999-06-18
판수 1판
페이지 620
ISBN 9780262133609
도서상태 구매가능
판매가격 94,240원
포인트 0점
배송비결제 주문시 결제

선택된 옵션

  • Foundations of Statistical Natural Language Processing(1999)
    +0원
위시리스트

관련상품

  • Statistical approaches to processing natural language text have become dominant in recent years. This foundational text is the first comprehensive introduction to statistical natural language processing (NLP) to appear. The book contains all the theory and algorithms needed for building NLP tools. It provides broad but rigorous coverage of mathematical and linguistic foundations, as well as detailed discussion of statistical methods, allowing students and researchers to construct their own implementations. The book covers collocation finding, word sense disambiguation, probabilistic parsing, information retrieval, and other applications.

  •  

    I Preliminaries
    1 Introduction 
    1.1 Rationalist and Empiricist Approaches to Language 
    1.2 Scientific Content 
    1.3 The Ambiguity of Language: Why NLP Is Difficult 
    1.4 Dirty Hands 
    1.5 Further Reading 
    1.6 Exercises

     

    2 Mathematical Foundations 
    2.1 Elementary Probability Theory 
    2.2 Essential Information Theory 
    2.3 Further Reading

     

    3 Linguistics Essentials 
    3.1 Parts of Speech and Morphology 
    3.2 Phrase Structure 
    3.3 Semantics and Pragmatics 
    3.4 Other Areas 
    3.5 Further Reading 
    3.6 Exercises

     

    4 Corpus-Based Work 
    4.1 Getting Set Up 
    4.2 Looking at Text 
    4.3 Marked-Up Data 
    4.4 Further Reading 
    4.5 Exercises

     


    II Words
    5 Collocations 
    5.1 Frequency 
    5.2 Mean and Variance 
    5.3 Hypothesis Testing 
    5.4 Mutual Information 
    5.5 The Notion of Collocation 
    5.6 Further Reading

     

    6 Statistical Inference: n-gram Models over Sparse Data 
    6.1 Bins: Forming Equivalence Classes 
    6.2 Statistical Estimators 
    6.3 Combining Estimators 
    6.4 Conclusions 
    6.5 Further Reading 
    6.6 Exercises

     

    7 Word Sense Disambiguation 
    7.1 Methodological Preliminaries 
    7.2 Supervised Disambiguation 
    7.3 Dictionary-Based Disambiguation 
    7.4 Unsupervised Disambiguation 
    7.5 What Is a Word Sense? 
    7.6 Further Reading 
    7.7 Exercises

     

    8 Lexical Acquisition 
    8.1 Evaluation Measures 
    8.2 Verb Subcategorization 
    8.3 Attachment Ambiguity 
    8.4 Selectional Preferences 
    8.5 Semantic Similarity 
    8.6 The Role of Lexical Acquisition in Statistical NLP 
    8.7 Further Reading

     


    III Grammar
    9 Markov Models 
    9.1 Markov Models 
    9.2 Hidden Markov Models 
    9.3 The Three Fundamental Questions for HMMs 
    9.4 HMMs: Implementation, Properties, and Variants 
    9.5 Further Reading

     

    10 Part-of-Speech Tagging 
    10.1 The Information Sources in Tagging 
    10.2 Markov Model Taggers 
    10.3 Hidden Markov Model Taggers 
    10.4 Transformation-Based Learning of Tags 
    10.5 Other Methods, Other Languages 
    10.6 Tagging Accuracy and Uses of Taggers 
    10.7 Further Reading 
    10.8 Exercises

     

    11 Probabilistic Context Free Grammars 
    11.1 Some Features of PCFGs 
    11.2 Questions for PCFGs 
    11.3 The Probability of a String 
    11.4 Problems with the Inside-Outside Algorithm 
    11.5 Further Reading 
    11.6 Exercises

     

    12 Probabilistic Parsing 
    12.1 Some Concepts 
    12.2 Some Approaches 
    12.3 Further Reading 
    12.4 Exercises

     


    IV Applications and Techniques
    13 Statistical Alignment and Machine Translation 
    13.1 Text Alignment 
    13.2 Word Alignment 
    13.3 Statistical Machine Translation 
    13.4 Further Reading

     

    14 Clustering 
    14.1 Hierarchical Clustering 
    14.2 Non-Hierarchical Clustering 
    14.3 Further Reading 
    14.4 Exercises

     

    15 Topics in Information Retrieval 
    15.1 Some Background on Information Retrieval 
    15.2 The Vector Space Models 
    15.3 Term Distribution Models 
    15.4 Latent Semantic Indexing 
    15.5 Discourse Segmentation 
    15.6 Further Reading 
    15.7 Exercises

     

    16 Text Categorization 
    16.1 Decision Trees 
    16.2 Maximum Entropy Modeling 
    16.3 Perceptrons 
    16.4 k Nearest Neighbor Classification 
    16.5 Further Reading 
     

  • Christopher D. Manning is Assistant Professor in the Department of Computer Science at Stanford University. 

    Hinrich Schotze is on the Research Staff at the Xerox Palo Alto Research Center.

  • 학습자료


    등록된 학습자료가 없습니다.

    정오표


    등록된 정오표가 없습니다.

  • 상품 정보

    상품 정보 고시

  • 사용후기

    등록된 사용후기

    사용후기가 없습니다.

  • 상품문의

    등록된 상품문의

    상품문의가 없습니다.

  • 배송/교환정보

    배송정보

    cbff54c6728533e938201f4b3f80b6da_1659402509_9472.jpg

    교환/반품 정보

    cbff54c6728533e938201f4b3f80b6da_1659402593_2152.jpg
     

선택된 옵션

  • Foundations of Statistical Natural Language Processing(1999)
    +0원