로그인이
필요합니다

도서를 검색해 주세요.

원하시는 결과가 없으시면 문의 주시거나 다른 검색어를 입력해보세요.

견본신청 문의
단체구매 문의
오탈자 문의

Mathematical Methods for Neural Network Analysis and Design 요약정보 및 구매

상품 선택옵션 0 개, 추가옵션 0 개

사용후기 0 개
지은이 Golden
발행년도 1996-12-01
판수 1 판
페이지 432
ISBN 9780262071741
도서상태 구매가능
판매가격 110,160원
포인트 0점
배송비결제 주문시 결제

선택된 옵션

  • Mathematical Methods for Neural Network Analysis and Design
    +0원
위시리스트

관련상품

  • This graduate-level text teaches students how to use a small number of powerful mathematical tools for analyzing and designing a wide variety of artificial neural network (ANN) systems, including their own customized neural networks. Mathematical Methods for Neural Network Analysis and Design offers an original, broad, and integrated approach that explains each tool in a manner that is independent of specific ANN systems. Although most of the methods presented are familiar, their systematic application to neural networks is new. Included are helpful chapter summaries and detailed solutions to over 100 ANN system analysis and design problems. For convenience, many of the proofs of the key theorems have been rewritten so that the entire book uses a relatively uniform notion. This text is unique in several ways. It is organized according to categories of mathematical tools -- for investigating the behavior of an ANN system, for comparing (and improving) the efficiency of system computations, and for evaluating its computational goals -- that correspond respectively to David Marr's implementational, algorithmic, and computational levels of description. And instead of devoting separate chapters to different types of ANN systems, it analyzes the same group of ANN systems from the perspective of different mathematical methodologies. A Bradford Book

  • 1 Introduction 
    1.1 The General Theoretical Framework 
    1.2 Introduction to ANN Systems 
    1.3 ANN System Applications 
    1.4 Formal Definition of ANN Systems 
    1.5 Relevant Mathematical Concepts 
    1.6 Chapter Summary 
    1.7 Additional Reading 
    1.8 Elementary Problems 
    1.9 Math Review Problems 
    I IMPLEMENTATIONAL LEVEL
    2 ANN Dynamical Systems 
    2.1 ANN Classification Dynamical Systems 
    2.2 ANN Learning Dynamical Systems 
    2.3 Chapter Summary 
    2.4 Problems 
    3 Deterministic Nonlinear Dynamical Systems Analysis 
    3.1 Autonomous Dynamical Systems 
    3.2 Invariant Sets 
    3.3 Invariant Set Theorem 
    3.4 ANN Applications 
    3.5 Proof of the Invariant Set Theorem 
    3.6 Chapter Summary 
    3.7 Elementary Problems 
    3.8 Problems 
    4 Stochastic Nonlinear Dynamical Systems Analysis 
    4.1 Stochastic Convergence Concepts 
    4.2 Stochastic Approximation Theorem 
    4.3 ANN Applications 
    4.4 Stochastic Approximation Theorem Proof 
    4.5 Chapter Summary 
    4.6 Elementary Problems 
    4.7 Problems 
    II ALGORITHMIC LEVEL
    5 Nonlinear Optimization Theory 
    5.1 Optimization Goals 
    5.2 Deterministic Nonlinear Optimization 
    5.3 Stochastic Nonlinear Optimization 
    5.4 Convergence Rate Analysis 
    5.5 Classical and ANN Applications 
    5.6 Chapter Summary 
    5.7 Elementary Problems 
    5.8 Problems 
    III COMPUTATIONAL LEVEL
    6 Rational Inference Measures 
    6.1 Measures for Relational Systems 
    6.2 Special Measures for Relational Systems 
    6.3 Gibbs Probability Measures (Markov Random Fields) 
    6.4 Decision Rules 
    6.5 The Generalization Problem 
    6.6 Historical Perspective on Decision Making 
    6.7 Chapter Summary 
    6.8 Elementary Problems 
    7 Expected Risk Classification and Learning Theory 
    7.1 The Optimal Classification Assumption 
    7.2 Rational ANN Learning Goals 
    7.3 ANN Applications 
    7.4 Chapter Summary 
    7.5 Elementary Problems 
    7.6 Problems 
    8 Statistical Model Evaluation 
    8.1 Asymptotic Distribution of Sampling Error 
    8.2 Model Selection 
    8.3 ANN Applications 
    8.4 Chapter Summary 
    8.5 Elementary Problems 
    8.6 Problems
    Epilogue 
    Problem Solutions 
    References 
    Author Index 
    Subject Index

  • 학습자료


    등록된 학습자료가 없습니다.

    정오표


    등록된 정오표가 없습니다.

  • 상품 정보

    상품 정보 고시

  • 사용후기

    등록된 사용후기

    사용후기가 없습니다.

  • 상품문의

    등록된 상품문의

    상품문의가 없습니다.

  • 배송/교환정보

    배송정보

    cbff54c6728533e938201f4b3f80b6da_1659402509_9472.jpg

    교환/반품 정보

    cbff54c6728533e938201f4b3f80b6da_1659402593_2152.jpg
     

선택된 옵션

  • Mathematical Methods for Neural Network Analysis and Design
    +0원