로그인이
필요합니다

도서를 검색해 주세요.

원하시는 결과가 없으시면 문의 주시거나 다른 검색어를 입력해보세요.

견본신청 문의
단체구매 문의
오탈자 문의

Variational Methods in Shape Optimization Problems(2005) 요약정보 및 구매

상품 선택옵션 0 개, 추가옵션 0 개

사용후기 0 개
지은이 Dorin Bucur
발행년도 2005-07-01
판수 1 edition판
페이지 216
ISBN 9780817643591
도서상태 구매가능
판매가격 88,140원
포인트 0점
배송비결제 주문시 결제

선택된 옵션

  • Variational Methods in Shape Optimization Problems(2005)
    +0원
위시리스트

관련상품

  • The study of shape optimization problems encompasses a wide spectrum of academic research with numerous applications to the real world. In this work these problems are treated from both the classical and modern perspectives and target a broad audience of graduate students in pure and applied mathematics, as well as engineers requiring a solid mathematical basis for the solution of practical problems. Key topics and features: * Presents foundational introduction to shape optimization theory * Studies certain classical problems: the isoperimetric problem and the Newton problem involving the best aerodynamical shape, and optimization problems over classes of convex domains * Treats optimal control problems under a general scheme, giving a topological framework, a survey of "gamma"-convergence, and problems governed by ODE * Examines shape optimization problems with Dirichlet and Neumann conditions on the free boundary, along with the existence of classical solutions * Studies optimization problems for obstacles and eigenvalues of elliptic operators * Poses several open problems for further research * Substantial bibliography and index Driven by good examples and illustrations and requiring only a standard knowledge in the calculus of variations, differential equations, and functional analysis, the book can serve as a text for a graduate course in computational methods of optimal design and optimization, as well as an excellent reference for applied mathematicians addressing functional shape optimization problems.
  • * Introduction to Shape Optimization Theory and Some Classical Problems > General formulation of a shape optimization problem > The isoperimetric problem and some of its variants > The Newton problem of minimal aerodynamical resistance > Optimal interfaces between two media > The optimal shape of a thin insulating layer * Optimization Problems Over Classes of Convex Domains > A general existence result for variational integrals > Some necessary conditions of optimality > Optimization for boundary integrals > Problems governed by PDE of higher order * Optimal Control Problems: A General Scheme > A topological framework for general optimization problems > A quick survey on "gamma"-convergence theory > The topology of "gamma"-convergence for control variables > A general definition of relaxed controls > Optimal control problems governed by ODE > Examples of relaxed shape optimization problems * Shape Optimization Problems with Dirichlet Condition on the Free Boundary > A short survey on capacities > Nonexistence of optimal solutions > The relaxed form of a Dirichlet problem > Necessary conditions of optimality > Boundary variation > Continuity under geometric constraints > Continuity under topological constraints: > Nonlinear operators: necessary and sufficient conditions for the "gamma"-convergence > Stability in the sense of Keldysh > Further remarks and generalizations * Existence of Classical Solutions > Existence of optimal domains under geometrical constraints > A general abstract result for monotone costs > The weak "gamma"-convergence for quasi-open domains > Examples of monotone costs > The problem of optimal partitions > Optimal obstacles * Optimization Problems for Functions of Eigenvalues > Stability of eigenvalues under geometric domain perturbation > Setting the optimization problem > A short survey on continuous Steiner symmetrization > The case of the first two eigenvalues of the Laplace operator > Unbounded design regions > Some open questions * Shape Optimization Problems with Neumann Condition on the Free Boundary > Some examples > Boundary variation for Neumann problems > General facts in RN  Topological constraints for shape stability > The optimal cutting problem > Eigenvalues of the Neumann Laplacian * Bibliography * Index
  • 학습자료


    등록된 학습자료가 없습니다.

    정오표


    등록된 정오표가 없습니다.

  • 상품 정보

    상품 정보 고시

  • 사용후기

    등록된 사용후기

    사용후기가 없습니다.

  • 상품문의

    등록된 상품문의

    상품문의가 없습니다.

  • 배송/교환정보

    배송정보

    cbff54c6728533e938201f4b3f80b6da_1659402509_9472.jpg

    교환/반품 정보

    cbff54c6728533e938201f4b3f80b6da_1659402593_2152.jpg
     

선택된 옵션

  • Variational Methods in Shape Optimization Problems(2005)
    +0원