로그인이
필요합니다

도서를 검색해 주세요.

원하시는 결과가 없으시면 문의 주시거나 다른 검색어를 입력해보세요.

견본신청 문의
단체구매 문의
오탈자 문의

Real Analysis: A First Course(1997) 요약정보 및 구매

상품 선택옵션 0 개, 추가옵션 0 개

사용후기 0 개
지은이 Gordon
발행년도 1997-06-01
ISBN 9780201832105
도서상태 구매가능
판매가격 10,000원
포인트 0점
배송비결제 주문시 결제

선택된 옵션

  • Real Analysis: A First Course(1997)
    +0원
위시리스트

관련상품

  • This text provides the theory behind single-variable calculus, and includes the topics typically required, such as sequences, continuity, differentiation, integration, and infinite series. The last chapter introduces point-set topology. The author presents his material in a clear, uncluttered manner, keeping a narrative style while focusing on the basic ideas of real analysis.

  • 1. Real Numbers. 
    What is a Real Number? 
    The Completeness Axiom. 
    Some Miscellaneous Results. 
    Countable and Uncountable Sets. 
    The Uncountability of the Set of Real Numbers. 
    2. Sequences. 
    Convergent Sequences. 
    Algebraic Properties and Monotone Sequences. 
    Cauchy Sequences. 
    The Bolzano-Weierstrass Theorem. 
    3. Limits. 
    The Limit of a Function. 
    The Algebra of Limits. 
    One-sided Limits and Infinite Limits. 
    4. Continuity. 
    Continuous Functions. 
    Intermediate and Extreme Values. 
    Monotone Functions and Inverse Functions. 
    Uniform Continuity. 
    5. Differentiation. 
    The Derivative of a Function. 
    The Chain Rule. 
    Further Results on Derivatives. 
    The Mean Value Theorem. 
    L'H pital's Rule. 
    6. Integration. 
    The Riemann Integral. 
    Properties of the Riemann Integral. 
    Types of Riemann Integrable Functions. 
    The Fundamental Theorem of Calculus. 
    Additional Algebraic Properties. 
    7. Infinite Series. 
    Convergence of Infinite Series. 
    Two Classes of Infinite Series. 
    The Comparision Tests. 
    Absolute Convergence. 
    The Root and Ratio Tests. 
    8. Sequences and Series of Functions. 
    Sequences of Functions. 
    Uniform Convergence. 
    Uniform Convergence and Inherited Properties.
    Series of Functions. 
    Two Miscellaneous Results. 
    Power Series. 
    Taylor Series. 
    9. Point-Set Topology. 
    Open and Closed Sets. 
    Limit Points. 
    Compact Sets. 
    The Heine-Borel Theorem. 
    Continuous Functions. 
    Continuous Functions and Compact Sets. 
    10. Some Deeper Results. 
    The Set of Points of Continuity of a Function. 
    The Baire Category Theorem. 
    Baire Class One Functions. 
    Continuity Properties of Baire One Functions.

  • 학습자료


    등록된 학습자료가 없습니다.

    정오표


    등록된 정오표가 없습니다.

  • 상품 정보

    상품 정보 고시

  • 사용후기

    등록된 사용후기

    사용후기가 없습니다.

  • 상품문의

    등록된 상품문의

    상품문의가 없습니다.

  • 배송/교환정보

    배송정보

    cbff54c6728533e938201f4b3f80b6da_1659402509_9472.jpg

    교환/반품 정보

    cbff54c6728533e938201f4b3f80b6da_1659402593_2152.jpg
     

선택된 옵션

  • Real Analysis: A First Course(1997)
    +0원