°æ¹®»ç
¿À´Ã ³»°¡ º» »óÇ°
(1)
´Ý±â
¼îÇÎ¸ô >
¼öÀÔµµ¼
>
±¹³»µµ¼
¼öÀÔµµ¼
Mathematics
>
Mathematics
Mathematics Education
Engineering
Language / Linguistics
English Teaching / Methodology
Literature
ELT
Geometry
Calculus
Algebra
Geometry
Topology
Analysis
Differential Equation
History of Mathematics
Statistics
Applied Mathematics
General Science
Complex Geometry: An Introduction (2004)
¹«·á¹è¼Û
ÁöÀºÀÌ
:
Daniel Huybrechts
ÃâÆÇ»ç
:
Springer
ÆÇ¼ö
:
1 edition
ÆäÀÌÁö¼ö
:
309 pages
ISBN
:
3540212906
¿¹»óÃâ°íÀÏ
:
ÀÔ±ÝÈ®ÀÎÈÄ 2ÀÏ ÀÌ³»
ÁÖ¹®¼ö·®
:
°³
µµ¼°¡°Ý
:
Ç°Àý
Complex geometry studies (compact) complex manifolds. It discusses algebraic as well as metric aspects. The subject is on the crossroad of algebraic and differential geometry. Recent developments in string theory have made it an highly attractive area, both for mathematicians and theoretical physicists.
The author's goal is to provide an easily accessible introduction to the subject. The book contains detailed accounts of the basic concepts and the many exercises illustrate the theory. Appendices to various chapters allow an outlook to recent research directions.
Daniel Huybrechts is currently Professor of Mathematics at the University Denis Diderot in Paris.
Introduction to Partial Di...
-Zachmanoglou-
(Dover)
Real Analysis Modern Techn...
-Folland-
(Wiley)
A First Course in Abstract...
-John B. Fraleigh-
(Addison-Wesley)
ÀÔ±Ý ´ë±âÁß ¤Ì
±âÃÊÈ®·ü°ú Åë°èÇÐ ¿¬½À...
QNA
Differential Geome...
Elementary Differe...
Elementary Differe...
Geometric Numerica...
Projective Geometr...
Elementary Differe...
Differential Geome...
Geometry and Symme...