경문사

쇼핑몰 >  수입도서 >  Mathematics >  Analysis

Measure and Integral: An Introduction to Real Analysis  무료배송

 
지은이 : Richard L. Wheeden & Antoni Zygmund
출판사 : Chapman & Hall/CRC
판수 : 1nd (1977)
페이지수 : 288
ISBN : 9780824764999
예상출고일 : 입금확인후 2일 이내
주문수량 :
도서가격 : 42,000원 ( 무료배송 )
적립금 : 1,260 Point
     

 
This volume develops the classical theory of the Lebesgue integral and some of its applications. The integral is initially presented in the context of n-dimensional Euclidean space, following a thorough study of the concepts of outer measure and measure. A more general treatment of the integral, based on an axiomatic approach, is later given.
Closely related topics in real variables, such as functions of bounded variation, the Riemann-Stieltjes integral, Fubini's theorem, L(p)) classes, and various results about differentiation are examined in detail. Several applications of the theory to a specific branch of analysis--harmonic analysis--are also provided. Among these applications are basic facts about convolution operators and Fourier series, including results for the conjugate function and the Hardy-Littlewood maximal function.
Measure and Integral: An Introduction to Real Analysis provides an introduction to real analysis for student interested in mathematics, statistics, or probability. Requiring only a basic familiarity with advanced calculus, this volume is an excellent textbook for advanced undergraduate or first-year graduate student in these areas.
Preliminaries

Points and Sets in Rn
Rn as a Metric Space
Open and Closed Sets in Rn: Special Sets
Compact Sets; The Heine-Borel Theorem
Functions
Continuous Functions and Transformations
The Riemann Integral
Exercises Function of Bounded Variation; The Riemann-Stieltjes Integral Functions of Bounded Variation
Rectifiable Curves
The Reiman-Stieltjes Integral
Further Results About the Reimann-Stieltjes Integrals
Exercises

Lebesgue Measure and Outer Measure Lebesgue Outer Measures; The Cantor Set. Lebesgue Measurable Sets
Two Properties of Lebesgue Measure
Characterizations of Measurability
Lipschitz Transformations of Rn
A Nonmeasurable Set. Exercises
Lebesgue Measurable Functions
Elementary Properties of Measurable Functions. Semicontinuous Functions
Properties of Measurable Functions; Egorov's Theorem and Lusin's Theorem
Convergence in Measure
Exercises

The Lebesgue Integral
Definition of the Integral of a Nonnegative Function
Properties of the Integral
The Integral of an Arbitrary Measurable f
A Relation Between Riemann-Stieltjes and Lebesgue Integrals; the LP Spaces, 0
Introduction to Partial Di...
-Zachmanoglou-
 
 
Real Analysis Modern Techn...
-Folland-
 
 
A First Course in Abstract...
-John B. Fraleigh-
 
 
   
 
주문취소 부탁드립니다.
주문 취소 부탁드립니다
고급 미적분학
Real Analysis : Me...
Real Analysis Mode...
Fourier Analysis :...
Real Analysis,4th(...
An Introduction to...
Probability: Theor...
Functional Analysi...
Fourier Series and...
Real-Variable Meth...
Complex Variables ...