경문사

쇼핑몰 >  수입도서 >  Mathematics >  Analysis

Real Analysis and Foundations, 4nd  무료배송

 
지은이 : Steven G. Krantz
출판사 : CRC
페이지수 : 430
ISBN : 9781498777681
예상출고일 : 입금확인후 2일 이내
주문수량 :
도서가격 : 59,000원 ( 무료배송 )
적립금 : 1,770 Point
     

 
Steven G. Krantz is a professor of mathematics at Washington University in St. Louis. He has previously taught at UCLA, Princeton University, and Pennsylvania State University. He has written more than 65 books and more than 175 scholarly papers and is the founding editor of the Journal of Geometric Analysis. An AMS Fellow, Dr. Krantz has been a recipient of the Chauvenet Prize, Beckenbach Book Award, and Kemper Prize. He received a Ph.D. from Princeton University.

1. Number Systems
The Real Numbers
Appendix: Construction of the Real Numbers
The Complex Numbers

2. Sequences
Convergence of Sequences
Subsequences
Limsup and Liminf
Some Special Sequences

3. Series of Numbers
Convergence of Series
Elementary Convergence Tests
Advanced Convergence Tests
Some Special Series
Operations on Series

4. Basic Topology
Open and Closed Sets
Further Properties of Open and Closed Sets
Compact Sets
The Cantor Set
Connected and Disconnected Sets
Perfect Sets

5. Limits and Continuity of Functions
Basic Properties of the Limit of a Function
Continuous Functions
Topological Properties and Continuity
Classifying Discontinuities and Monotonicity

6. Differentiation of Functions
The Concept of Derivative
The Mean Value Theorem and Applications
More on the Theory of Differentiation

7. The Integral
Partitions and the Concept of Integral
Properties of the Riemann Integral
Change of Variable and Related Ideas
Another Look at the Integral
Advanced Results on Integration Theory

8. Sequences and Series of Functions
Partial Sums and Pointwise Convergence
More on Uniform Convergence
Series of Functions
The Weierstrass Approximation Theorem

9. Elementary Transcendental Functions
Power Series .
More on Power Series: Convergence Issues
The Exponential and Trigonometric Functions
Logarithms and Powers of Real Numbers

10. Differential Equations
Picard’s Existence and Uniqueness Theorem
The Form of a Differential Equation
Picard’s Iteration Technique
Some Illustrative Examples
Estimation of the Picard Iterates
Power Series Methods

11. Introduction to Harmonic Analysis
The Idea of Harmonic Analysis
The Elements of Fourier Series
An Introduction to the Fourier Transform
Appendix: Approximation by Smooth Functions
Fourier Methods and Differential Equations
Remarks on Different Fourier Notations
The Dirichlet Problem on the Disc
Introduction to the Heat and Wave Equations
Boundary Value Problems
Derivation of the Wave Equation
Solution of the Wave Equation
The Heat Equation

12. Functions of Several Variables
A New Look at the Basic Concepts of Analysis
Properties of the Derivative
The Inverse and Implicit Function Theorems

Appendix I: Elementary Number Systems
Appendix II: Logic and Set Theory
Appendix III: Review of Linear Algebra

Introduction to Partial Di...
-Zachmanoglou-
 
 
Real Analysis Modern Techn...
-Folland-
 
 
A First Course in Abstract...
-John B. Fraleigh-
 
 
   
 
고급 미적분학
고급미적분학
박승안 교수님 추상대수...
Real Analysis,4th(...
Fourier Analysis :...
Real Analysis Mode...
Real Analysis : Me...
Complex Analysis (...
Heisenberg Groups,...
Complex Variables ...
Functional Analysi...
Probability: Theor...
Real-Variable Meth...