로그인이
필요합니다

도서를 검색해 주세요.

원하시는 결과가 없으시면 문의 주시거나 다른 검색어를 입력해보세요.

견본신청 문의
단체구매 문의
오탈자 문의

집합론 해설(Lecture Notes in Set Theory/Pinter), 개정판 요약정보 및 구매

상품 선택옵션 0 개, 추가옵션 0 개

사용후기 0 개
지은이 Charles C. Pinter
옮긴이 박찬녕 엮음
발행년도 2006-01-20
판수 개정판
페이지 414
ISBN 9788961056854
도서상태 구매가능
판매가격 25,000원
포인트 0점
배송비결제 주문시 결제

선택된 옵션

  • 집합론 해설(Lecture Notes in Set Theory/Pinter), 개정판
    +0원
위시리스트

관련상품

  • This book has been written for junior and senior students for mathematics; it is intended as a basic text for one-semester courses in set theory or the foundations of mathematics. My chief concern throughout the writing of this work has been to make it accessible to relatively unsophisticated students. The arguments are perfectly rigorous, but I have attempted to make them as simple as possible, balancing the advantages of brevity with the need for sucient detail.

    Every denition is accompanied by a fair amount of commentary, whose purpose is to motivate and explain new concepts in simple terms and provide some background information. There is a progressive increase in complexity which is carefully planned; the book begins with a repetition of the familiar arguments of elementary set theory.

    Then, throughout the ¯rst four chapters the level of abstract thinking gradually rises and the arguments become more difficult by small stages. This is designed so that even the less mature student may be brought to the point where he can understand the deeper results of set theory, which are presented, especially, in the last three chapters. 

     
  • Preface
    엮은이의 글 

    Chapter 0 Historical Introduction 1
    0.1 The background of set theory 1
    0.2 The paradoxes 4
    0.3 The axiomatic method 6
    0.4 Axiomatic set theory 13
    0.5 Objections to the axiomatic approach 19
    0.6 Concluding remarks 27

    Chapter 1 Classes and Sets 31
    1.1 Building sentences 31
    1.2 Building classes 41
    1.3 The algebra of classes 52
    1.4 Ordered pairs and Cartesian products 58
    1.5 Graphs 64
    1.6 Generalized union and intersection 69
    1.7 Sets 74

    Chapter 2 Functions 83
    2.1 Introduction 83
    2.2 Fundamental concepts and de¯nitions 84
    2.3 Composite and inverse functions 95
    2.4 Direct images and inverse images 103
    2.5 Product of a family of classes 108
    2.6 The axiom of replacement 112

    Chapter 3 Relations 117
    3.1 Introduction 117
    3.2 Fundamental concepts and de¯nitions 117
    3.3 Equivalence relations and partitions 122
    3.4 Pre-image, restriction and quotient 130
    3.5 Equivalence relations and functions 135

    Chapter 4 Partially Ordered Classes 141
    4.1 Fundamental concepts and de¯nitions 141
    4.2 Order preserving functions and isomorphisms 146
    4.3 Distinguished elements and the duality 154
    4.4 Lattices 165
    4.5 Fully ordered and well-ordered 173
    4.6 Isomorphism between well-ordered classes 180

    Chapter 5 The Axiom of Choice 187
    5.1 Introduction 187
    5.2 The axiom of choice 194
    5.3 An application of the axiom of choice 198
    5.4 Maximal principles 203
    5.5 The well-ordering theorem 206
    5.6 Conclusion 209

    Chapter 6 The Natural Numbers 211
    6.1 Introduction 211
    6.2 Elementary properties 214
    6.3 Finite recursion 218
    6.4 Arithmetic of natural numbers 224
    6.5 Concluding remark 232

    Chapter 7 Finite and Infinite Sets 235
    7.1 Introduction 235
    7.2 Equipotence of sets 243
    7.3 Properties of in¯nite sets 246
    7.4 Properties of denumerable sets 250

    Chapter 8 Arithmetic of Cardinal Numbers 257
    8.1 Introduction 257
    8.2 Operations on cardinal numbers 260
    8.3 Ordering of the cardinal numbers 266
    8.4 Infinite cardinal numbers 272
    8.5 Infinite sums and products 276
     

    Chapter 9 Arithmetic of Ordinal Numbers 281
    9.1 Introduction 281
    9.2 Operations on ordinal numbers 286
    9.3 Ordering of the ordinal numbers 292
    9.4 The alephs and the continuum hypothesis 301
    9.5 Construction of the ordinals and cardinals¤ 305

    Chapter 10 Transfinite Recursion and Selected Topics 315
    10.1 Transfinite recursion 315
    10.2 Properties of ordinal exponentiation 323
    10.3 Normal form 330
    10.4 Epsilon numbers 336
    10.5 Inaccessible ordinals and cardinals 342

    Chapter 역사적 소개 355
    0.1 집합론의 배경 355
    0.2 역설 357
    0.3 공리적 방법 360
    0.4 공리적 집합론 366
    0.5 공리적 집합론에 대한 반론과 다른 대안들 373
    0.6 맺음말 380

    Bibliography 383
    Index 385

  • 지은이: Charles C. Pinter 


    엮은이: 박찬녕

  • 학습자료


    등록된 학습자료가 없습니다.

    정오표


    등록된 정오표가 없습니다.

  • 상품 정보

    상품 상세설명

    364dcb4d0f76685c4b0068018d5ab591_1653296413_6551.JPG
    364dcb4d0f76685c4b0068018d5ab591_1653296413_7362.JPG
    364dcb4d0f76685c4b0068018d5ab591_1653296413_8088.JPG
     

    상품 정보 고시

  • 사용후기

    등록된 사용후기

    사용후기가 없습니다.

  • 상품문의

    등록된 상품문의

    상품문의가 없습니다.

  • 배송/교환정보

    배송정보

    cbff54c6728533e938201f4b3f80b6da_1659402509_9472.jpg

    교환/반품 정보

    cbff54c6728533e938201f4b3f80b6da_1659402593_2152.jpg
     

선택된 옵션

  • 집합론 해설(Lecture Notes in Set Theory/Pinter), 개정판
    +0원