로그인이
필요합니다

도서를 검색해 주세요.

원하시는 결과가 없으시면 문의 주시거나 다른 검색어를 입력해보세요.

견본신청 문의
단체구매 문의
오탈자 문의

Technical Calculus with Analytic Geometry, 5th 요약정보 및 구매

사용후기 0 개
지은이 Kuhfitting
발행년도 2013-04-13
판수 5(2013)판
페이지 546
ISBN 9781285053387
도서상태 구매가능
판매가격 39,000원
포인트 0점
배송비결제 주문시 결제

상품의 재고가 부족하여 구매할 수 없습니다.

위시리스트

관련상품

  • This text is written for today's technology student, with an accessible, intuitive approach and an emphasis on applications of calculus to technology. The text's presentation of concepts is clear and concise, with examples worked in great detail, enhanced by marginal annotations, and supported with step-by-step procedures whenever possible. Another powerful enhancement is the use of a functional second color to help explain steps. Differential and integral calculus are introduced in the first five chapters, while more advanced topics, such as differential equations and LaPlace transforms, are covered in later chapters. This organization allows the text to be used in a variety of technology programs.
  • 1. INTRODUCTION TO ANALYTIC GEOMETRY. The Cartesian Coordinate System. The Slope. The Straight Line. Curve Sketching. Discussion of Curves with Graphing Utilities. The Conics. The Circle. The Parabola. The Ellipse. The Hyperbola. Translation of Axes; Standard Equations of the Conics. Review Exercises. 2. INTRODUCTION TO CALCULUS: THE DERIVATIVE. Functions and Intervals. Limits. The Derivative. The Derivative by the Four-Step Process. Derivatives of Polynomials. Instantaneous Rates of Change. Differentiation Formulas. Implicit Differentiation. Higher Derivatives. Review Exercises. 3. APPLICATIONS OF THE DERIVATIVE. The First-Derivative Test. The Second-Derivative Test. Exploring with Graphing Utilities. Applications of Minima and Maxima. Related rates. Differentials. Review Exercises. 4. THE INTEGRAL. Antiderivatives. The Area Problem. The Fundamental Theorem of Calculus. The Integral: Notation and General Definition. Basic Integration Formulas. Area Between Curves. Improper Integrals. The Constant of Integration. Numerical Integration. Review Exercises. 5. APPLICATION OF THE INTEGRAL. Means of Root Mean Squares. Volumes of Revolution: Disk and Washer Methods. Volumes of Revolution: Shell Method. Centroids. Moments of Inertia. Work and Fluid Pressure. Review Exercises. 6. DERIVATIVES OF TRANSCENDENTAL FUNCTIONS. Review of Trigonometry. Derivatives of Sine and Cosine Functions. Other Trigonometric Functions. Inverse Trigonometric Functions. Derivatives of Inverse Trigonometric Functions. Exponential and Logarithmic Functions. Derivative of the Logarithmic Function. Derivative of the Exponential Function. L'Hospital's rule. Applications. Newton's Method. Review Exercises. 7. INTEGRATION TECHNIQUES. The Power Formula Again. The Logarithmic and Exponentials Forms. Trigonometric Forms. Further Trigonometric Forms. Inverse Trigonometric Forms. Integration by Trigonometric Substitution. Integration by Parts. Integration of Rational Functions. Integration by Use of Tables. Additional Remarks. Review Exercises. 8. PARAMETIC EQUATIONS, VECTORS, AND POLAR COORDINATES. Vectors and Parametric Equations. Arc Length. Polar Coordinates. Curves in Polar Coordinates. Areas in Polar Coordinates. Review Exercises. 9. THREE-DIMENSIONAL SPACE; PARTIAL DERIVATIVES; MULTIPLE INTEGRALS. Surfaces in Three Dimensions. Partial Derivatives. Applications of Partial Derivatives. Curve Fitting. Integrated Integrals. Volumes by Double Integration. Mass, Centroids, and Moments of Inertia. Volumes in Cylindrical Coordinates. Review Exercises. 10. INFINITE SERIES. Introduction to Infinite Series. Tests for Convergence. Maclaurin Series. Operations with Series. Computations with Series; Applications. Fourier Series. Review Exercises. 11. FIRST-ORDER DIFFERETIAL EQUATIONS. What is Differential Equation? Separation of Variables. First-Order Linear Differential Equations. Applications of First-Order Differential Equations. Numerical Solutions. Review Exercises. 12. HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS. Higher-Order Homogeneous Differential Equations. Auxiliary Equations with Repeating or Complex Roots. Nonhomogeneous Equations. Applications of Second-Order Equations. Review Exercises. 13. THE LAPLACE TRANSFORM. Introduction and Basic Properties. Inverse Laplace Transforms. Partial Fractions. Solutions of Linear Equations by Laplace Transforms. Review Exercises. Appendix A: Tables. Common Units of Measure. A Short Table of Integrals. Appendix B: Answers to Selected Exercises. Index.
  • Peter Kuhfittig has taught mathematics at the Milwaukee School of Engineering for over thirty years and has served as head of the department for over half of this period. His enthusiasm for teaching has resulted in an award for excellence in teaching, as well as an interest in textbook writing. He has been involved in applications of mathematics through occasional consulting work. More recently, Dr. Kuhfittig has turned to research in wormhole physics
  • 학습자료


    등록된 학습자료가 없습니다.

    정오표


    등록된 정오표가 없습니다.

  • 상품 정보

    상품 정보 고시

  • 사용후기

    등록된 사용후기

    사용후기가 없습니다.

  • 상품문의

    등록된 상품문의

    상품문의가 없습니다.

  • 배송/교환정보

    배송정보

    cbff54c6728533e938201f4b3f80b6da_1659402509_9472.jpg

    교환/반품 정보

    cbff54c6728533e938201f4b3f80b6da_1659402593_2152.jpg