로그인이
필요합니다

도서를 검색해 주세요.

원하시는 결과가 없으시면 문의 주시거나 다른 검색어를 입력해보세요.

견본신청 문의
단체구매 문의
오탈자 문의

Algebraic Topology 요약정보 및 구매

상품 선택옵션 0 개, 추가옵션 0 개

사용후기 0 개
지은이 Allen Hatcher
발행년도 2002-03-01
판수 1판
페이지 544
ISBN 9780521795401
도서상태 구매가능
판매가격 52,000원
포인트 0점
배송비결제 주문시 결제

선택된 옵션

  • Algebraic Topology
    +0원
위시리스트

관련상품

  • In most major universities one of the three or four basic first year graduate mathematics courses is algebraic topology. This introductory text is suitable for use in a course on the subject or for self study, featuring broad coverage and a readable exposition, with many examples and exercises. The four main chapters present the basics: fundamental group and covering spaces, homology and cohomology, higher homotopy groups, and homotopy theory generally. The author emphasizes the geometric aspects of the subject, which helps students gain intuition. A unique feature is the inclusion of many optional topics not usually part of a first course due to time constraints: Bockstein and transfer homomorphisms, direct and inverse limits, H spaces and Hopf algebras, the Brown representability theorem, the James reduced product, the Dold Thom theorem, and Steenrod squares and powers.Researchers will also welcome this aspect of the book. 


    An introductory textbook suitable for use in a course or for self-study, featuring broad coverage of the subject and a readable exposition, with many examples and exercises. 

  • Part I. Some Underlying Geometric Notions:  

    1. Homotopy and homotopy type; 

    2. Deformation retractions; 

    3. Homotopy of maps; 

    4. Homotopy equivalent spaces; 

    5. Contractible spaces; 

    6. Cell complexes definitions and examples; 

    7. Subcomplexes; 

    8. Some basic constructions; 

    9. Two criteria for homotopy equivalence; 

    10. The homotopy extension property; 


    Part II. Fundamental Group and Covering Spaces: 

    11. The fundamental group, paths and homotopy; 

    12. The fundamental group of the circle; 

    13. Induced homomorphisms; 

    14. Van Kampen's theorem of free products of groups; 

    15. The van Kampen theorem; 

    16. Applications to cell complexes; 

    17. Covering spaces lifting properties; 

    18. The classification of covering spaces; 

    19. Deck transformations and group actions; 

    20. Additional topics: graphs and free groups; 

    21. K(G,1) spaces; 

    22. Graphs of groups; 


    Part III. Homology: 

    23. Simplicial and singular homology delta-complexes; 

    24. Simplicial homology; 

    25. Singular homology; 

    26. Homotopy invariance; 

    27. Exact sequences and excision; 

    28. The equivalence of simplicial and singular homology; 

    29. Computations and applications degree; 

    30. Cellular homology; 

    31. Euler characteristic; 

    32. Split exact sequences; 

    33. Mayer-Vietoris sequences; 

    34. Homology with coefficients; 

    35. The formal viewpoint axioms for homology; 

    36. Categories and functors; 

    37. Additional topics homology and fundamental group; 

    38. Classical applications; 

    39. Simplicial approximation and the Lefschetz fixed point theorem; 


    Part IV. Cohomology: 

    40. Cohomology groups: the universal coefficient theorem; 

    41. Cohomology of spaces; 

    42. Cup product the cohomology ring; 

    43. External cup product; 

    44. Poincare duality orientations; 

    45. Cup product; 

    46. Cup product and duality; 

    47. Other forms of duality; 

    48. Additional topics the universal coefficient theorem for homology; 

    49. The Kunneth formula; 

    50. H-spaces and Hopf algebras; 

    51. The cohomology of SO(n); 

    52. Bockstein homomorphisms; 

    53. Limits; 

    54. More about ext; 

    55. Transfer homomorphisms; 

    56. Local coefficients; 


    Part V. Homotopy Theory: 

    57. Homotopy groups; 

    58. The long exact sequence; 

    59. Whitehead's theorem; 

    60. The Hurewicz theorem; 

    61. Eilenberg-MacLane spaces; 

    62. Homotopy properties of CW complexes cellular approximation; 

    63. Cellular models; 

    64. Excision for homotopy groups; 

    65. Stable homotopy groups; 

    66. Fibrations the homotopy lifting property; 

    67. Fiber bundles; 

    68. Path fibrations and loopspaces; 

    69. Postnikov towers; 

    70. Obstruction theory; 

    71. Additional topics: basepoints and homotopy; 

    72. The Hopf invariant; 

    73. Minimal cell structures; 

    74. Cohomology of fiber bundles; 

    75. Cohomology theories and omega-spectra; 

    76. Spectra and homology theories; 

    77. Eckmann-Hilton duality; 

    78. Stable splittings of spaces; 

    79. The loopspace of a suspension; 

    80. Symmetric products and the Dold-Thom theorem; 

    81. Steenrod squares and powers; Appendix: topology of cell complexes; The compact-open topology.

  • 지은이

    Allen Hatcher 

  • 학습자료


    등록된 학습자료가 없습니다.

    정오표


    등록된 정오표가 없습니다.

  • 상품 정보

    상품 정보 고시

  • 사용후기

    등록된 사용후기

    사용후기가 없습니다.

  • 상품문의

    등록된 상품문의

    상품문의가 없습니다.

  • 배송/교환정보

    배송정보

    cbff54c6728533e938201f4b3f80b6da_1659402509_9472.jpg

    교환/반품 정보

    cbff54c6728533e938201f4b3f80b6da_1659402593_2152.jpg
     

선택된 옵션

  • Algebraic Topology
    +0원