로그인이
필요합니다

도서를 검색해 주세요.

원하시는 결과가 없으시면 문의 주시거나 다른 검색어를 입력해보세요.

견본신청 문의
단체구매 문의
오탈자 문의

A First Course in Abstract Algebra: International edition(7th,2003) 요약정보 및 구매

사용후기 0 개
지은이 John B. Fraleigh
발행년도 2002-11-01
판수 7판
페이지 520
ISBN 9780321156082
도서상태 품절
판매가격 58,000원
포인트 0점
배송비결제 주문시 결제

상품의 재고가 부족하여 구매할 수 없습니다.

위시리스트

관련상품

  • Considered a classic by many, A First Course in Abstract Algebra is an in-depth introduction to abstract algebra. Focused on groups, rings and fields, this text gives students a firm foundation for more specialized work by emphasizing an understanding of the nature of algebraic structures.
  • 0. Sets and Relations. I. GROUPS AND SUBGROUPS. 1. Introduction and Examples. 2. Binary Operations. 3. Isomorphic Binary Structures. 4. Groups. 5. Subgroups. 6. Cyclic Groups. 7. Generators and Cayley Digraphs. II. PERMUTATIONS, COSETS, AND DIRECT PRODUCTS. 8. Groups of Permutations. 9. Orbits, Cycles, and the Alternating Groups. 10. Cosets and the Theorem of Lagrange. 11. Direct Products and Finitely Generated Abelian Groups. 12. *Plane Isometries. III. HOMOMORPHISMS AND FACTOR GROUPS. 13. Homomorphisms. 14. Factor Groups. 15. Factor-Group Computations and Simple Groups. 16. **Group Action on a Set. 17. *Applications of G-Sets to Counting. IV. RINGS AND FIELDS. 18. Rings and Fields. 19. Integral Domains. 20. Fermat's and Euler's Theorems. 21. The Field of Quotients of an Integral Domain. 22. Rings of Polynomials. 23. Factorization of Polynomials over a Field. 24. *Noncommutative Examples. 25. *Ordered Rings and Fields. V. IDEALS AND FACTOR RINGS. 26. Homomorphisms and Factor Rings. 27. Prime and Maximal Ideas. 28. *Grobner Bases for Ideals. VI. EXTENSION FIELDS. 29. Introduction to Extension Fields. 30. Vector Spaces. 31. Algebraic Extensions. 32. *Geometric Constructions. 33. Finite Fields. VII. ADVANCED GROUP THEORY. 34. Isomorphism Theorems. 35. Series of Groups. 36. Sylow Theorems. 37. Applications of the Sylow Theory. 38. Free Abelian Groups. 39. Free Groups. 40. Group Presentations. VIII. *GROUPS IN TOPOLOGY. 41. Simplicial Complexes and Homology Groups. 42. Computations of Homology Groups. 43. More Homology Computations and Applications. 44. Homological Algebra. IX. Factorization. 45. Unique Factorization Domains. 46. Euclidean Domains. 47. Gaussian Integers and Multiplicative Norms. X. AUTOMORPHISMS AND GALOIS THEORY. 48. Automorphisms of Fields. 49. The Isomorphism Extension Theorem. 50. Splitting Fields. 51. Separable Extensions. 52. *Totally Inseparable Extensions. 53. Galois Theory. 54. Illustrations of Galois Theory. 55. Cyclotomic Extensions. 56. Insolvability of the Quintic. Appendix: Matrix Algebra. Notations. Answers to odd-numbered exercises not asking for definitions or proofs. Index.
  • 학습자료


    등록된 학습자료가 없습니다.

    정오표


    등록된 정오표가 없습니다.

  • 상품 정보

    상품 정보 고시

  • 사용후기

    등록된 사용후기

    사용후기가 없습니다.

  • 상품문의

    등록된 상품문의

    상품문의가 없습니다.

  • 배송/교환정보

    배송정보

    cbff54c6728533e938201f4b3f80b6da_1659402509_9472.jpg

    교환/반품 정보

    cbff54c6728533e938201f4b3f80b6da_1659402593_2152.jpg