로그인이
필요합니다

도서를 검색해 주세요.

원하시는 결과가 없으시면 문의 주시거나 다른 검색어를 입력해보세요.

견본신청 문의
단체구매 문의
오탈자 문의

Calculus 요약정보 및 구매

사용후기 0 개
지은이 Sang-Gu Lee, Eung-Ki Kim, Yoonmee Ham, Ajit Kumar, Robert Beezer, Quoc-Phong Vu, Suk-Geun Hwang, Lois Simon
발행년도 2014-03-05
판수 1판
페이지 972
ISBN 9788961054584
도서상태 구매가능
판매가격 38,000원
포인트 0점
배송비결제 주문시 결제

상품의 재고가 부족하여 구매할 수 없습니다.

위시리스트

관련상품

  • Calculus is the mathematical foundation for much of the university curriculum in mathematics, science, and engineering. For students of mathematics, it is often their first exposure to rigorous mathematics. For the future engineer,it is an introduction to the modeling and approximation techniques used throughout the engineering curriculum. It is an introduction to the mathematical language that expresses many fundamental important concepts in science. We begin our study of differential and integral calculus with functions of a single variable and topics such as L'Hospital's theorem, concavity, convexity, inflection points, optimization, simple ordinary differential equations, parametric equations, polar coordinates, infinite sequences and infinite series. We then turn to multivariate and vector calculus, covering vector-valued functions, coordinate systems, partial derivatives and multiple integrals. This book has many problems presenting calculus as the foundation of modern mathematics, science and engineering, using concepts, definitions, terminology, and interpretation of the situation presented in the problem to discover solutions. Many of today's calculus textbooks use computer algebra systems (CAS) and a variety of visualization tools. But in most cases, use of these aids by students is limited. Therefore, we have adopted the usage of a wonderful free and pen-source mathematics  visualization program, Sage. With the new learning environment at many universities, tudents can take full advantage this 21st-century, state-of-the-art technology to learn calculus easily in preparation for heir future careers in any applicable area. Sage can be accessed easily on any web browser, without the need for dditional software installation, and on smaller devices like tablets and smartphones. More content and related materials will be continually added to the website for the book. So when you see CAS( CAS ) or a web address in he book, you will be able to find relevant information from http://matrix.skku.ac.kr/Cal-Book/ and http://math1.skku. c.kr/ . This will allow you (the student) to easily and quickly edit and manipulate existing examples to help with reating and solving new examples.

  • Preface / v 

    Cas / vi 

    Calculus Map / xv 

    Sage Code / xvi 


    Part I Single Variable Calculus

    Chapter 1. Functions 

    1.1 Functions and Graph 4 

    1.2 Symmetry 10 

    1.3 Common Functions 14 

    1.4 Translation, Stretching and Rotation of Functions 22 


    Chapter 2. Limits and Continuity 

    2.1 Limits of Functions 34 

    2.2 Continuity 53 


    Chapter 3. Derivatives 

    3.1 Definition of Derivatives, Differentiation 68 

    3.2 Derivatives of Functions, The Product and Quotient Rule 71 

    3.3 The Chain Rule and Inverse Functions 87 

    *3.4 Approximation and Related Rates 113 


    Chapter 4. Applications of Derivatives 

    4.1 Extreme values of a function 124 

    4.2 Shapes of Curves 138 

    4.3 The Limit of Indeterminate Forms and L’Hospital’s Rule 150 

    4.4 Mathematical Optimization Problems 158 

    4.5 Newton’s Method 167 


    Chapter 5. Integrals 

    5.1 Areas and Distances 174 

    5.2 The Definite Integral 178 

    5.3 The Fundamental Theorem of Calculus 193 

    5.4 Indefinite Integrals and the Net Change Theorem 202 

    5.5 The Substitution Rule 210 

    5.6 The Logarithm Defined as an Integral 220 


    Chapter 6. Applications of Integration 

    6.1 Areas between Curves 232 

    6.2 Volumes 242 

    6.3 Volumes by Cylindrical Shells 260 

    *6.4 Work 269 

    6.5 Average Value of a Function 276 


    Chapter 7. Techniques of Integration 

    7.1 Integration by Parts 286 

    7.2 Trigonometric Integrals 297 

    7.3 Trigonometric Substitution 306

    7.4 Integration of Rational Functions and CAS 315 

    7.5 Formulas for Integration 331 

    *7.6 Integration Using Tables 339 

    *7.7 Approximate Integration and CAS 344 

    7.8 Improper Integrals 356 


    Chapter 8. Further Applications of Integration 

    8.1 Arc Length 372 

    8.2 Area of a Surface of Revolution 380 

    8.3 Center of Mass 390 

    *8.4 Differential Equations 395 


    Chapter 9. Infinite Sequences and Infinite Series 

    9.1 Sequences and Series 406 

    9.2 Tests for Convergence of Series 427 

    9.3 Alternating Series and Absolute Convergence 437 

    9.4 Power Series 446 

    9.5 Taylor, Maclaurin, and Binomial Series 456 


    Part II Multivariate Calculus 

    Chapter 10. Parametric Equations and Polar Coordinates 

    10.1 Parametric Equations 478 

    10.2 Calculus with Parametric Curves 489 

    10.3 Polar Coordinates 501 

    10.4 Areas and Lengths in Polar Coordinates 515 

    10.5 Conic Sections 528 


    Chapter 11. Vectors and the Geometry of Space 

    11.1 Three-Dimensional Coordinate Systems 550 

    11.2 Vectors 556 

    11.3 The Dot Product 565 

    11.4 The Cross Product 575 

    11.5 Equations of Lines and Planes 585 

    11.6 Cylinders and Quadric Surfaces 603 


    Chapter 12. Vector Valued Functions 

    12.1 Vector-Valued Functions and Space Curves 618 

    12.2 Calculus of Vector Functions 628 

    12.3 Arc Length and Curvature 642 

    *12.4 Motion Along A Space Curve: Velocity and Acceleration 661 


    Chapter 13. Partial Derivatives 

    13.1 Multivariate Functions 674 

    13.2 Limits and Continuity of Multivariate Functions 684 

    13.3 Partial Derivatives 699 

    13.4 Differentiability and Total Differential 707 

    13.5 The Chain Rule 714 

    13.6 Directional Derivatives and Gradient 728 

    13.7 Tangent Plane 740 

    13.8 Extrema of Multivariate Functions 749 

    13.9 Lagrange Multiplier 769 


    Chapter 14. Multiple Integrals 

    14.1 Double Integrals 786 

    14.2 Double Integrals in Polar Coordinates 806 

    14.3 Surface Area 813 

    14.4 Cylindrical Coordinates and Spherical Coordinates 821 

    14.5 Triple Integrals 830 

    14.6 Triple Integrals in Cylindrical and Spherical Coordinates 836 

    14.7 The Substitution Method 842 


    Chapter 15. Vector Calculus 

    15.1 Vector Differentiation 854 

    15.2 Line Integrals 860 

    15.3 Potential Function and Independence of Path 865 

    15.4 Green’s Theorem in the Plane 876 

    15.5 Curl and Divergence 888 

    15.6 Surface Area 899 

    15.7 Surface Integrals 908 

    15.8 Stokes’Theorem 918 

    15.9 Divergence Theorem 925 


    Table / 937 

    References / 943 

    Index / 945

  • 지은이: Sang-Gu Lee, Eung-Ki Kim, Yoonmee Ham, Ajit Kumar, Robert Beezer, Quoc-Phong Vu, Suk-Geun Hwang, Lois Simon 

  • 학습자료


    등록된 학습자료가 없습니다.

    정오표


    등록된 정오표가 없습니다.

  • 상품 정보

    상품 정보 고시

  • 사용후기

    등록된 사용후기

    사용후기가 없습니다.

  • 상품문의

    등록된 상품문의

    상품문의가 없습니다.

  • 배송/교환정보

    배송정보

    cbff54c6728533e938201f4b3f80b6da_1659402509_9472.jpg

    교환/반품 정보

    cbff54c6728533e938201f4b3f80b6da_1659402593_2152.jpg