로그인이
필요합니다

도서를 검색해 주세요.

원하시는 결과가 없으시면 문의 주시거나 다른 검색어를 입력해보세요.

견본신청 문의
단체구매 문의
오탈자 문의

Calculus: Early Transcendentals, Metric Version, Korea Edition (원서: Calculus: Early Transcendentals, 9th) 요약정보 및 구매

상품 선택옵션 0 개, 추가옵션 0 개

사용후기 0 개
지은이 James Stewart, Daniel Clegg, Saleem Watson
발행년도 2022-02-21
페이지 1116
ISBN 9788962185300
도서상태 구매가능
판매가격 47,000원
포인트 0점
배송비결제 주문시 결제

선택된 옵션

  • Calculus: Early Transcendentals, Metric Version, Korea Edition (원서: Calculus: Early Transcendentals, 9th)
    +0원
위시리스트

관련상품

  • 본서는 “Calculus: Early Transcendentals, 9th Edition(9)”의 내용을 한국의 교육과정에 맞춰 필요한 부분만을 엄선, 축약하여 출간한 ‘KOREA EDITION’이다.

     

    이에 따라 원서(Calculus: Early Transcendentals, 9th Edition)에 수록된 내용 중 미분방정식(CHAPTER 9. Differential Equations) 등 일부 Chapter Section(sub-Chapter)은 이번 KOREA EDITION에 수록되어 있지 않았음을 참고하기 바란다. 원서의 내용 중 KOREA EDITION에 수록이 제외된 내용은 다음과 같다.


    CHAPTER 1. Functions and Models

    1.1. Four Ways to Represent a Function

    1.2. Mathematical Models: A Catalog of Essential Functions

    1.3. New Functions from Old Functions

    1.4. Exponential Functions

     

    CHAPTER 2. Limits and Derivatives

    2.1. The Tangent and Velocity Problems

     

    CHAPTER 3. Differentiation Rules

    3.7. Rates of Change in the Natural and Social Sciences

    3.8. Exponential Growth and Decay

    3.9. Related Rates

     

    CHAPTER 4. Applications of Differentiation

    4.5. Summary of Curve Sketching

    4.6. Graphing with Calculus and Technology

    4.8. Newton's Method

     

    CHAPTER 6. Applications of Integration

    6.4. Average Value of Function + Applied Projects

     

    CHAPTER 7. Techniques of Integration

    7.5. Strategy for Integration

    7.6. Integration Using Tables and Technology + Discovery Project

    7.7. Approximate Integration

     

    CHAPTER 8. Further Applications of Integration

    8.5. Probability

     

    CHAPTER 9. Differential Equations

     

    CHAPTER 10. Parametric Equations and Polar Coordinates

    10.6. Conic Sections in Polar Coordinates

     

    CHAPTER 11. Sequences, Series, and Power Series

    11.7. Strategy for Testing Series

     

    CHAPTER 16. Vector Calculus

    16.10. Summary

     

    Appendixes

    A. Numbers, Inequalties, and Absolute Values

    B. Coordinate Geometry and Lines

    C. Graphs of Second-Degree Equations

    E. Sigma Notation

    G. The Logarithm Defined as an Integral

  • Preface x

    A Tribute to James Stewart xxii

    About the Authors xxiii

    Technology in the Ninth Edition xxiv

    To the Student xxv

    Diagnostic Tests xxvi

     

    A Preview of Calculus

     

    1. Functions and Models

    1.1 Inverse Functions and Logarithms 8

     

    2. Limits and Derivatives

    2.1 The Limit of a Function 32

    2.2 Calculating Limits Using the Limit Laws 44

    2.3 The Precise Definition of a Limit 54

    2.4 Continuity 64

    2.5 Limits at Infinity; Horizontal Asymptotes 76

    2.6 Derivatives and Rates of Change 89

    2.7 The Derivative as a Function 102

     

    3. Differentiation Rules

    3.1 Derivatives of Polynomials and Exponential Functions 124

    3.2 The Product and Quotient Rules 135

    3.3 Derivatives of Trigonometric Functions 141

    3.4 The Chain Rule 149

    3.5 Implicit Differentiation 159

    3.6 Derivatives of Logarithmic and Inverse Trigonometric Functions 167

    3.7 Linear Approximations and Differentials 175

    3.8 Hyperbolic Functions 183

     

    4. Applications of Differentiation

    4.1 Maximum and Minimum Values 202

    4.2 The Mean Value Theorem 212

    4.3 What Derivatives Tell Us about the Shape of a Graph 218

    4.4 Indeterminate Forms and I’Hospital‘s Rule 231

    4.5 Optimization Problems 242

    4.6 Antiderivatives 257

     

    5. Integrals

    5.1 The Area and Distance Problems 274

    5.2 The Definite Integral 286

    5.3 The Fundamental Theorem of Calculus 301

    5.4 Indefinite Integrals and the Net Change Theorem 3 11

    5.5 The Substitution Rule 321

     

    6. Applications of Integration

    6.1 Areas Between Curves 338

    6.2 Volumes 348

    6.3 Volumes by Cylindrical Shells 362

    6.4 Average Value of a Function 369

     

    7. Techniques of Integration

    7.1 Integration by Parts 382

    7.2 Trigonometric Integrals 389

    7.3 Trigonometric Substitution 396

    7.4 Integration of Rational Functions by Partial Fractions 403

    7.5 Improper Integrals 413

     

    8. Further Applications of Integration

    8.1 Arc Length 430

    8.2 Area of a Surface of Revolution 437

    8.3 Applications to Physics and Engineering 446

    8.4 Applications to Economics and Biology 457

     

    9. Parametric Equations and Polar Coordinates

    9.1 Curves Defined by Parametric Equations 468

    9.2 Calculus with Parametric Curves 479

    9.3 Polar Coordinates 490

    9.4 Calculus in Polar Coordinates 500

    9.5 Conic Sections 508

     

    10. Sequences, Series, and Power Series

    10.1 Sequences 524

    10.2 Series 538

    10.3 The Integral Test and Estimates of Sums 551

    10.4 The Comparison Tests 560

    10.5 Alternating Series and Absolute Convergence 565

    10.6 The Ratio and Root Tests 576

    10.7 Power Series 579

    10.8 Representations of Functions as Power Series 584

    10.9 Taylor and Maclaurin Series 593

    10.10 Applications of Taylor Polynomials 610

     

    11. Vectors and the Geometry of Space

    11.1 Three-Dimensional Coordinate Systems 628

    11.2 Vectors 634

    11.3 The Dot Product 645

    11.4 The Cross Product 653

    11.5 Equations of Lines and Planes 662

    11.6 Cylinders and Quadric Surfaces 673

     

    12. Vector Functions

    12.1 Vector Functions and Space Curves 688

    12.2 Derivatives and Integrals of Vector Functions 696

    12.3 Arc Length and Curvature 702

    12.4 Motion in Space: Velocity and Acceleration 714

     

    13. Partial Derivatives

    13.1 Functions of Several Variables 732

    13.2 Limits and Continuity 749

    13.3 Partial Derivatives 759

    13.4 Tangent Planes and Linear Approximations 772

    13.5 The Chain Rule 783

    13.6 Directional Derivatives and the Gradient Vector 792

    13.7 Maximum and Minimum Values 806

    13.8 Lagrange Multipliers 818

     

    14. Multiple Integrals

    14.1 Double Integrals over Rectangles 836

    14.2 Double Integrals over General Regions 849

    14.3 Double Integrals in Polar Coordinates 860

    14.4 Applications of Double Integrals 867

    14.5 Surface Area 877

    14.6 Triple Integrals 880

    14.7 Triple Integrals in Cylindrical Coordinates 893

    14.8 Triple Integrals in Spherical Coordinates 900

    14.9 Change of Variables in Multiple Integrals 907

     

    15. Vector Calculus

    15.1 Vector Fields 922

    15.2 Line Integrals 929

    15.3 The Fundamental Theorem for Line Integrals 942

    15.4 Green’s Theorem 952

    15.5 Curl and Divergence 959

    15.6 Parametric Surfaces and Their Areas 968

    15.7 Surface Integrals 980

    15.8 Stokes' Theorem 993

    15.9 The Divergence Theorem 999

     

    Appendixes

    A Trigonometry A2

    B Proofs of Theorems A14

    C Answers to Odd-Numbered Exercises A26

     

  • 지은이: James Stewart, Daniel Clegg, Saleem Watson 

  • 학습자료


    등록된 학습자료가 없습니다.

    정오표


    등록된 정오표가 없습니다.

  • 상품 정보

    상품 정보 고시

  • 사용후기

    등록된 사용후기

    사용후기가 없습니다.

  • 상품문의

    등록된 상품문의

    상품문의가 없습니다.

  • 배송/교환정보

    배송정보

    cbff54c6728533e938201f4b3f80b6da_1659402509_9472.jpg

    교환/반품 정보

    cbff54c6728533e938201f4b3f80b6da_1659402593_2152.jpg
     

선택된 옵션

  • Calculus: Early Transcendentals, Metric Version, Korea Edition (원서: Calculus: Early Transcendentals, 9th)
    +0원