로그인이
필요합니다

도서를 검색해 주세요.

원하시는 결과가 없으시면 문의 주시거나 다른 검색어를 입력해보세요.

견본신청 문의
단체구매 문의
오탈자 문의

Limit Algebras: An Introduction to Sub-algebras of C-star algebras 요약정보 및 구매

상품 선택옵션 0 개, 추가옵션 0 개

사용후기 0 개
지은이 Power
발행년도 1992-12-21
페이지 224
ISBN 9780582087811
도서상태 구매가능
판매가격 62,000원
포인트 0점
배송비결제 주문시 결제

선택된 옵션

  • Limit Algebras: An Introduction to Sub-algebras of C-star algebras
    +0원
위시리스트

관련상품

  • Written by one of the key researchers in this field, this volume develops the theory of non-self adjoint limit algebras from scratch.

  • Preface
    1. Finite-dimensional C*-algebra homomorphisms

    1.1. Standard subalgebras
    1.2. General star subalgebras
    1.3. Inner conjugacy of star homomorphisms
    1.4. On choosing a matrix unit system (m.u.s)
    1.5. On refining a matrix unit system

    2. Limit algebras

    2.1. Tridiagonal matrix algebra system
    2.2. The compact operators as a limit algebra
    2.3. Standard Glimm algebras
    2.4. Isomorphism of limit algebras
    2.5. Glimm algebras
    2.6. Standardisation of Glimm algebras
    2.7. Stationary Bratteli diagram

    3. Glimm algebras

    3.1. Nearby projection lemma
    3.2. Almost inclusion of finite-dimensional C*-algebras
    3.3. Classification of Glimm algebras
    3.4. Intrinsic characterisation of Glimm algebras
    3.5. Close projections are equivalent
    3.6. Close m.u.s.'s are conjugate

    4. Inductivity

    4.1. {-63}actual symbol not reproducible C, the projection onto a regular canonical masa
    4.2. Inductive subspaces relative to {B{-63}subscript k }
    4.3. Closed ideals are inductive
    4.4. Glimm algebras are simple
    4.5. Inductivity of commutants {-63}actual symbol not reproducible
    4.6. {-63}actual symbol not reproducible projections for the chain {-63}actual symbol not reproducible
    4.7. C-bimodules are inductive
    4.8. P is faithful
    4.9. Canonical subalgebras and regular embeddings
    4.10. Singular masas and nonregular embeddings

    5. Topological equivalence relations

    5.1. {-63}actual symbol not reproducible , the topological equivalence relation of a m.u.s
    5.2. Example (refinement limits)
    5.3. Isomorphic relations imply isomorphic algebras
    5.4. The normalising semigroup N{-63}subscript C (B)
    5.5. Structure of N{-63}subscript C (B)
    5.6. R(B) is equal to {-63}actual symbol not reproducible
    5.7. Regular canonical masas are conjugate

    6. Diverse limit algebras

    6.1. Refinement limit algebras
    6.2. Standard limit algebras
    6.3. Alternation limit algebras
    6.4. Nest embeddings
    6.5. Ordered Bratteli diagrams
    6.6. Infinite tensor products
    6.7. Digraph matrix algebras
    6.8. Strongly regular embeddings
    6.9. Nonregular limit algebras

    7. Topological binary relations

    7.1. A characterisation of N{-63}subscript C (S)
    7.2. R(A) as an invariant
    7.3. Local spectral theorem for C-bimodules
    7.4. Bimodule spectral theorem
    7.5. The pair (C, R(A)) as a complete invariant
    7.6. The refinement and standard limit algebras
    7.7. Complete invariants for triangular algebras
    7.8. When bimodules are algebras, self-adjoint and triangular
    7.9. Strongly maximal triangular algebras
    7.10. R(A) for the refinement limit algebra
    7.11. R(A) for the standard limit algebra
    7.12. Hybrid algebras
    7.13. Lexicographic products

    8. Algebraic order, nest subalgebras, and Gelfand support

    8.1. Equivalent forms of the algebraic order : S(A), {-63}actual symbol not reproducible
    8.2. The equivalence relation generated by S(A)
    8.3. C*(A) as a Banach algebra invariant
    8.4. Invariance of the normalised trace
    8.5. Some isomorphism invariants
    8.6. Uncountably many hybrid algebras
    8.7. Gelfand support and essential support
    8.8. Invariance of gs(A) and es(A)
    8.9. Homogeneous nest subalgebras
    8.10. Refinement with twist limits
    8.11. Singular and semiregular nests
    8.12. The singular nests {-63}actual symbol not reproducible
    8.13. Homogeneous singular nest subalgebras
    8.14. Nest algebras with trivial Gelfand support

    9. Chordal algebras, Alternation algebras, and Markov chains

    9.1. Chordal algebras
    9.2. Construction of chordal subalgebras
    9.3. Chordal systems when R(A) is chordal
    9.4. Gap pairs for alternation algebras
    9.5. Characterisation of gap pairs
    9.6. Classification of alternation algebras
    9.7. Uncountably many alternation subalgebras
    9.8. General alternation algebras and Markov chains

    10. Triangularity, semisimplicity, and analyticity

    10.1. Triangularity
    10.2. Dense bimodules with {-63}actual symbol not reproducible
    10.3. Non-closed maximal triangular algebras
    10.4. Maximal triangular algebras with {-63}actual symbol not reproducible proper
    10.5. More maximal triangular algebras
    10.6. Semisimplicity
    10.7. Links
    10.8. Characterisations of semisimplicity
    10.9. Chain of links lemma
    10.10. Wedderburn decomposition
    10.11. Analyticity
    10.12. Cocycles and coboundaries
    10.13. Analytic implies strongly maximal
    10.14. Alternation algebras are analytic
    10.15. Simple ordered Bratteli diagrams
    10.16. Z-analyticity and Bratteli diagrams
    10.17. Z-analyticity and coboundary analyticity
    10.18. Strongly maximal triangular, but not analytic
    10.19. Bounded cocycles are coboundaries
    10.20. The term analytic

    11. K{-63}subscript 0 , algebraic orders, and homology

    11.1. Ordered group
    11.2. Dimension group
    11.3. Continued fractions
    11.4. Continued fractions for irrationals
    11.5. Effros Shen theorem
    11.6. {-63}actual symbol not reproducible
    11.7. The ordered group K{-63}subscript 0 A
    11.8. Scaled dimension groups
    11.9. Continuity of K{-63}subscript 0
    11.10. The algebraic order of K{-63}subscript 0
    11.11. Strongly regular limits of elementary algebras
    11.12. Elliott's theorem
    11.13. Conjugacy of strongly regular embeddings
    11.14. Homology invariants
    11.15. H{-63}subscript 0 A = K{-63}subscript 0 C*(A)
    11.16. 4-cycle limit algebras
    11.17. Rigid embeddings
    11.18. Conjugacy for D{-63}subscript 4 x K{-63}subscript n embeddings
    11.19. Homologically limited embeddings
    11.20. K{-63}subscript 0 data : the quadruple invariant
    11.21. Classification when H{-63}subscript 1 A = 0
    11.22. Classification of pairs (A, C) by {-63}actual symbol not reproducible
    11.23. Classification by {-63}actual symbol not reproducible
    11.24. The stability property (S) for digraph algebras
    11.25. Approximate partial isometry lemma I
    11.26. Approximate partial isometry lemma II
    11.27. The 4-cycle digraph algebras have property (S)

    12. Crossed products and circle algebras

    12.1. Crossed products
    12.2. C(S{-63}superscript 1 ) as a maximal norm completion
    12.3. Faithful representation of A(X, {-63}phi )
    12.4. Generalised Fourier series for {-63}actual symbol not reproducible
    12.5. Semicrossed products
    12.6. Classification by homeomorphism conjugacy
    12.7. Minimal homeomorphisms of Cantor spaces
    12.8. Finite-dimensional subalgebras of {-63}actual symbol not reproducible
    12.9. Subalgebra chains in {-63}actual symbol not reproducible
    12.10. AF subalgebras of {-63}actual symbol not reproducible
    12.11. {-63}actual symbol not reproducible is not a canonical AF subalgebra
    12.12. Z-analytic subalgebras revisited
    12.13. Circle algebras in crossed products (Putnam's theorem)
    12.14. Crossed products as limit algebras
    12.15. Tridiagonal limits in crossed products

    References
    Index
    Notation

  • 학습자료


    등록된 학습자료가 없습니다.

    정오표


    등록된 정오표가 없습니다.

  • 상품 정보

    상품 정보 고시

  • 사용후기

    등록된 사용후기

    사용후기가 없습니다.

  • 상품문의

    등록된 상품문의

    상품문의가 없습니다.

  • 배송/교환정보

    배송정보

    cbff54c6728533e938201f4b3f80b6da_1659402509_9472.jpg

    교환/반품 정보

    cbff54c6728533e938201f4b3f80b6da_1659402593_2152.jpg
     

선택된 옵션

  • Limit Algebras: An Introduction to Sub-algebras of C-star algebras
    +0원