로그인이
필요합니다

도서를 검색해 주세요.

원하시는 결과가 없으시면 문의 주시거나 다른 검색어를 입력해보세요.

견본신청 문의
단체구매 문의
오탈자 문의

Calculus: One and Several Variables, 10th Edition(International Adaptation) 요약정보 및 구매

상품 선택옵션 0 개, 추가옵션 0 개

사용후기 0 개
지은이 Saturnino L. Salas, Einar Hille, Garret J. Etgen
발행년도 2022-01-01
판수 10판
ISBN 9781119770671
도서상태 구매가능
판매가격 60,000원
포인트 0점
배송비결제 주문시 결제

선택된 옵션

  • Calculus: One and Several Variables, 10th Edition(International Adaptation)
    +0원
위시리스트

관련상품

  • For ten editions, readers have turned to Salas to learn the difficult concepts of calculus without sacrificing rigor. Wiley is proud to publish a new revision of Calculus: One and Several Variables 10th Edition, known for its elegant writing style, precision and perfect balance of theory and applications. The Tenth Edition is refined to offer students an even clearer understanding of calculus and insight into mathematics. It includes a wealth of rich problem sets which makes calculus relevant for students. Salas/Hille/Etgen is recognized for its mathematical integrity, accuracy, and clarity that will help readers master these concepts and understand their relevance to the real world. 

  • Chapter 1. Precalculus Review.

    1.1 What is Calculus? 

    1.2 Review of Elementary Mathematics. 

    1.3 Review of Inequalities. 

    1.4 Coordinate Plane; Analytic Geometry. 

    1.5 Functions. 

    1.6 The Elementary Functions. 

    1.7 Combinations of Functions. 

    1.8 A Note on Mathematical Proof; Mathematical Induction. 


    Chapter 2. Limits and Continuity.

    2.1 The Limit Process (An Intuitive Introduction). 

    2.2 Definition of Limit. 

    2.3 Some Limit Theorems. 

    2.4 Continuity. 

    2.5 The Pinching Theorem; Trigonometric Limits. 

    2.6 Two Basic Theorems. 


    Chapter 3. The Derivative; The Process of Differentiation.

    3.1 The Derivative. 

    3.2 Some Differentiation Formulas. 

    3.3 The d/dx Notation; Derivatives of Higher Order. 

    3.4 The Derivative as a Rate of Change. 

    3.5 The Chain Rule. 

    3.6 Differentiating the Trigonometric Functions. 

    3.7 Implicit Differentiation; Rational Powers. 


    Chapter 4. The Mean-Value Theorem; Applications of the First and Second Derivatives. 

    4.1 The Mean-Value Theorem. 

    4.2 Increasing and Decreasing Functions. 

    4.3 Local Extreme Values. 

    4.4 Endpoint Extreme Values; Absolute Extreme Values. 

    4.5 Some Max-Min Problems. 

    4.6 Concavity and Points of Inflection. 

    4.7 Vertical and Horizontal Asymptotes; Vertical Tangents and Cusps. 

    4.8 Some Curve Sketching. 

    4.9 Velocity and Acceleration; Speed. 

    4.10 Related Rates of Change Per Unit Time. 

    4.11 Differentials. 

    4.12 Newton-Raphson Approximations. 


    Chapter 5.  Integration.

    5.1 An Area Problem; A Speed-Distance Problem. 

    5.2 The Definite Integral of a Continuous Function. 

    5.3 The Function f(x) = Integral from a to x of f(t) dt. 

    5.4 The Fundamental Theorem of Integral Calculus. 

    5.5 Some Area Problems. 

    5.6 Indefinite Integrals. 

    5.7 Working Back from the Chain Rule; the u-Substitution. 

    5.8 Additional Properties of the Definite Integral. 

    5.9 Mean-Value Theorems for Integrals; Average Value of a Function. 


    Chapter 6.  Some Applications of the Integral.

    6.1 More on Area. 

    6.2 Volume by Parallel Cross-Sections; Discs and Washers. 

    6.3 Volume by the Shell Method. 

    6.4 The Centroid of a Region; Pappus’s Theorem on Volumes. 

    6.5 The Notion of Work. 

    6.6 Fluid Force. 


    Chapter 7.  The Transcendental Functions. 

    7.1 One-to-One Functions; Inverse Functions. 

    7.2 The Logarithm Function, Part I. 

    7.3 The Logarithm Function, Part II. 

    7.4 The Exponential Function. 

    7.5 Arbitrary Powers; Other Bases. 

    7.6 Exponential Growth and Decay. 

    7.7 The Inverse Trigonometric Functions. 

    7.8 The Hyperbolic Sine and Cosine. 

    7.9 The Other Hyperbolic Functions. 


    Chapter 8.  Techniques of Integration.

    8.1 Integral Tables and Review. 

    8.2 Integration by Parts. 

    8.3 Powers and Products of Trigonometric Functions. 

    8.4 Integrals Featuring Square Root of (a^2 – x^2),  Square Root of (a^2 + x^2), and Square Root of (x^2 – a^2). 

    8.5 Rational Functions; Partial Functions. 

    8.6 Some Rationalizing Substitutions. 

    8.7 Numerical Integration. 


    Chapter 9.  Differential Equations.

    9.1 First-Order Linear Equations. 

    9.2 Integral Curves; Separable Equations. 

    9.3 The Equation y′′ + ay′+ by = 0. 


    Chapter 10.  The Conic Sections; Polar Coordinates; Parametric Equations. 

    10.1 Geometry of Parabola, Ellipse, Hyperbola. 

    10.2 Polar Coordinates. 

    10.3 Graphing in Polar Coordinates. 

    10.4 Area in Polar Coordinates. 

    10.5 Curves Given Parametrically. 

    10.6 Tangents to Curves Given Parametrically. 

    10.7 Arc Length and Speed. 

    10.8 The Area of a Surface of Revolution; Pappus’s Theorem on Surface Area. 


    Chapter 11.  Sequences; Indeterminate Forms; Improper Integrals. 

    11.1 The Least Upper Bound Axiom. 

    11.2 Sequences of Real Numbers. 

    11.3 The Limit of a Sequence. 

    11.4 Some Important Limits. 

    11.5 The Indeterminate Forms (0/0). 

    11.6 The Indeterminate Form (∞/∞); Other Indeterminate Forms. 

    11.7 Improper Integrals. 


    Chapter 12.  Infinite Series. 

    12.1 Sigma Notation. 

    12.2 Infinite Series. 

    12.3 The Integral Test; Basic Comparison, Limit Comparison. 

    12.4 The Root Test; The Ratio Test. 

    12.5 Absolute and Conditional Convergence; Alternating Series. 

    12.6 Taylor Polynomials in x; Taylor Series in x. 

    12.7 Taylor Polynomials and Taylor Series in x – a. 

    12.8 Power Series. 

    12.9 Differentiation and Integration of Power Series. 


    Chapter 13.  Vectors.

    13.1 Rectangular Space Coordinates. 

    13.2 Vectors in Three-Dimensional Space. 

    13.3 The Dot Product. 

    13.4 The Cross Product. 

    13.5 Lines. 

    13.6 Planes. 

    13.7 Higher Dimensions. 


    Chapter 14.  Vector Calculus. 

    14.1 Limit, Continuity, Vector Derivative. 

    14.2 The Rules of Differentiation. 

    14.3 Curves. 

    14.4 Arc Length. 

    14.5 Curvilinear Motion; Curvature. 

    14.6 Vector Calculus in Mechanics. 

    14.7 Planetary Motion. 


    Chapter 15.  Functions of Several Variables. 

    15.1 Elementary Examples. 

    15.2 A Brief Catalogue of Quadric Surfaces; Projections. 

    15.3 Graphs; Level Curves and Level Surfaces. 

    15.4 Partial Derivatives. 

    15.5 Open Sets and Closed Sets. 

    15.6 Limits and Continuity; Equality of Mixed Partials. 


    Chapter 16.  Gradients; Extreme Values; Differentials.

    16.1 Differentiability and Gradient. 

    16.2 Gradients and Directional Derivatives. 

    16.3 The Mean-Value Theorem; the Chain Rule. 

    16.4 The Gradient as a Normal; Tangent Lines and Tangent Planes. 

    16.5 Local Extreme Values. 

    16.6 Absolute Extreme Values. 

    16.7 Maxima and Minima with Side Conditions. 

    16.8 Differentials. 

    16.9 Reconstructing a Function from Its Gradient. 


    Chapter 17.  Multiple Integrals.

    17.1 Multiple-Sigma Notation. 

    17.2 Double Integrals. 

    17.3 The Evaluation of Double Integrals by Repeated Integrals. 

    17.4 The Double Integral as the Limit or Riemann Sums; Polar Coordinates. 

    17.5 Further Applications of Double Integration. 

    17.6 Triple Integrals. 

    17.7 Reduction to Repeated Integrals. 

    17.8 Cylindrical Coordinates. 

    17.9 The Triple Integral as the Limit of Riemann Sums; Spherical Coordinates. 

    17.10 Jacobians; Changing Variables in Multiple Integration. 


    Chapter 18.  Line Integrals and Surface Integrals.

    18.1 Line Integrals. 

    18.2 The Fundamental Theorem for Line Integrals. 

    18.3 Work-Energy Formula; Conservation of Mechanical Energy. 

    18.4 Another Notation for Line Integrals; Line Integrals with Respect to Arc Length. 

    18.5 Green’s Theorem. 

    18.6 Parametrized Surfaces; Surface Area. 

    18.7 Surface Integrals. 

    18.8 The Vector Differential Operator Ñ. 

    18.9 The Divergence Theorem. 

    18.10 Stokes’s Theorem. 


    Chapter 19.  Additional Differential Equations.

    19.1 Bernoulli Equations; Homogeneous Equations. 

    19.2 Exact Differential Equations; Integrating Factors. 

    19.3 Numerical Methods. 

    19.4 The Equation y′′ + ay′+ by = ø(x). 

    19.5 Mechanical Vibrations. 


    Appendix A.  Some Additional Topics. 

    A.1 Rotation of Axes; Eliminating the xy-Term. 

    A.2 Determinants. 


    Appendix B.  Some Additional Proofs.

    B.1 The Intermediate-Value Theorem. 

    B.2 Boundedness; Extreme-Value Theorem. 

    B.3 Inverses. 

    B.4 The Integrability of Continuous Functions. 

    B.5 The Integral as the Limit of Riemann Sums. 

  • 지은이: Saturnino L. Salas, Einar Hille, Garret J. Etgen

  • 학습자료


    등록된 학습자료가 없습니다.

    정오표


    등록된 정오표가 없습니다.

  • 상품 정보

    상품 상세설명

    NEW TO THIS EDITION

    • More examples, clarifications, and explanatory materials have been added throughout the text as appropriate.
    • The technology exercises using CAS or calculators have been rewritten and new exercises added throughout the text.
    • Additional media resources have been created to support the text.
    • Content structure changes include:
    • The section on related rates has been moved from chapter 3 to 4.
    • A new brief chapter on differential equations has been added.

    Updated or refreshed data has been incorporated in selected exercises and examples

    • Review exercise sets have been added to the end of each chapter.
    • Additional applications from a variety of fields have been added where appropriate

    FEATURES

    • Precision and Clarity.  Mathematical statements are careful and precise and the basic concepts and important points are not obscured by excess verbiage.
    • Accessibility. This text is completely accessible to the beginning calculus student without sacrificing mathematical rigor.
    • Balance of Theory and Applications. Many problems are drawn from the sciences and engineering fields to help motivate students.

    상품 정보 고시

  • 사용후기

    등록된 사용후기

    사용후기가 없습니다.

  • 상품문의

    등록된 상품문의

    상품문의가 없습니다.

  • 배송/교환정보

    배송정보

    cbff54c6728533e938201f4b3f80b6da_1659402509_9472.jpg

    교환/반품 정보

    cbff54c6728533e938201f4b3f80b6da_1659402593_2152.jpg
     

선택된 옵션

  • Calculus: One and Several Variables, 10th Edition(International Adaptation)
    +0원