1. VECTORS.
Introduction: The Racetrack Game. The Geometry and Algebra of Vectors. Length and Angle: The Dot Product. Exploration: Vectors and Geometry. Lines and Planes. Exploration: The Cross Product. Writing Project: Origins of the Dot Product and the Cross Product. Applications.
2. SYSTEMS OF LINEAR EQUATIONS.
Introduction: Triviality. Introduction to Systems of Linear Equations. Direct Methods for Solving Linear Systems. Writing Project: A History of Gaussian Elimination. Explorations: Lies My Computer Told Me; Partial Pivoting; Counting Operations: An Introduction to the Analysis of Algorithms. Spanning Sets and Linear Independence. Applications. Vignette: The Global Positioning System. Iterative Methods for Solving Linear Systems.
3. MATRICES.
Introduction: Matrices in Action. Matrix Operations. Matrix Algebra. The Inverse of a Matrix. The LU Factorization. Subspaces, Basis, Dimension, and Rank. Introduction to Linear Transformations. Vignette: Robotics. Applications.
4. EIGENVALUES AND EIGENVECTORS.
Introduction: A Dynamical System on Graphs. Introduction to Eigenvalues and Eigenvectors. Determinants. Writing Project: Which Came First-the Matrix or the Determinant? Vignette: Lewis Carroll's Condensation Method. Exploration: Geometric Applications of Determinants. Eigenvalues and Eigenvectors of n x n Matrices. Writing Project: The History of Eigenvalues. Similarity and Diagonalization. Iterative Methods for Computing Eigenvalues. Applications and the Perron-Frobenius Theorem.
Vignette: Ranking Sports Teams and Searching the Internet.
5. ORTHOGONALITY.
Introduction: Shadows on a Wall. Orthogonality in Rn. Orthogonal Complements and Orthogonal Projections. The Gram-Schmidt Process and the QR Factorization. Explorations: The Modified QR Factorization; Approximating Eigenvalues with the QR Algorithm. Orthogonal Diagonalization of Symmetric Matrices. Applications.
6. VECTOR SPACES.
Introduction: Fibonacci in (Vector) Space. Vector Spaces and Subspaces. Linear Independence, Basis, and Dimension. Writing Project: The Rise of Vector Spaces. Exploration: Magic Squares. Change of Basis. Linear Transformations. The Kernel and Range of a Linear Transformation. The Matrix of a Linear Transformation. Exploration: Tilings, Lattices and the Crystallographic Restriction. Applications.
7. DISTANCE AND APPROXIMATION.
Introduction: Taxicab Geometry. Inner Product Spaces. Explorations: Vectors and Matrices with Complex Entries; Geometric Inequalities and Optimization Problems. Norms and Distance Functions. Least Squares Approximation. The Singular Value Decomposition. Vignette: Digital Image Compression. Applications.
8. CODES. (Online)
Code Vectors. Vignette: The Codabar System. Error-Correcting Codes. Dual Codes. Linear Codes. The Minimum Distance of a Code.
Appendix A: Mathematical Notation and Methods of Proof.
Appendix B: Mathematical Induction.
Appendix C: Complex Numbers.
Appendix D: Polynomials.