로그인이
필요합니다

도서를 검색해 주세요.

원하시는 결과가 없으시면 문의 주시거나 다른 검색어를 입력해보세요.

견본신청 문의
단체구매 문의
오탈자 문의

유클리드 데이터 [경문수학산책 40] 요약정보 및 구매

사용후기 0 개
지은이 Christian Marinus Taisbak
옮긴이 서보억, 김동근
발행년도 2013-05-10
판수 1판
페이지 422
ISBN 9788961056267
도서상태 구매가능
판매가격 26,000원
포인트 0점
배송비결제 주문시 결제

상품의 재고가 부족하여 구매할 수 없습니다.

위시리스트

관련상품

  • 이 책은 번역하는 수년 동안 나에게 많은 고민을 안겨다 준 것으로 기억한다. 특히 1993년 맥도웰((McDowell)과 소콜릭(Sokolik)에 의한 ‘Euclid’s Data’의 다른 번역본이 먼저 출판되어 나온 것이 가장 큰 고민이었다. 그럼에도 불구하고 맥도웰과 소콜릭의 번역본은 오류가 불과 한 쪽 분량의 정오표에 의해 교정될 정도로 잘 정리된 것이었다. 또한, 이들의 번역본에 의해서 유클리드 ‘자료론(The Data)’에 대한 강력한 인상을 남겼다. 하지만 이것을 모두 읽고 난 이후에, 나는 고대의 유명한 주석가인 파푸스(Pappus)와 마리누스(Marinus)가 품었던 것과 동일한 인상을 가지게 되었다. 그것은 바로 ‘이 책은 전적으로 무엇에 관한 책인가’하는 의문이었다.

    따라서 내가 이 책에 담아야 할 가장 중요한 작업으로 생각한 것은 “기존의 유클리드 <자료론> 번역본에 대한 서로 상반된 판단을 내린 새로운 번역본을 제공하여 혼돈을 가중시키려고자 하는 것이 아니라, <자료론>에 대한 수학적이고 철학적인 나의 생각을 설명하고 드러내고자 하는 것”임을 밝혀 두고자 한다.

    “만약에 유클리드 <자료론>에 대해 서술된 책이 존재하지 않았다면, 나는 결코 그것을 놓치지 않았을 것이다.”
    ― 코펜하겐에서의 나의 개인적인 대화.

    “유클리드와 그 당대의 수학자들에 의해 만들어진 기하학 연구에 적절한 계량적 척도(measure)는 <원론>이 아닌 <자료론> 안에서 찾을 수 있다.”
    ― Wilbur Richard Knorr(1986).
     

    나는 특별히 비평적인 결과물을 출판하려고 의도하지 않는다. 아랍어로 된 자료론을 그리스어로 번역한 하인리히 멘지(Heinrich Menge)는 그리스 원어로 번역할 때, 아랍어 원문에 충실하게 매우 건전한 판단을 내리고 있었다. 이로 인해 아랍어 원문에 나오는 문자 그대로의 내용 이외의 변수를 고려한 새로운 시도는 거의 찾아볼 수 없었다. 하인리히 멘지의 번역판이 “자료론”의 내용을 그대로 제시하였다는 것에는 하등의 의문은 없었지만, 아랍어로 된 “자료론”에 결론적으로 제시되어 있는 ‘명제’에 대한 새로운 계승(succession)의 탐색과 같은 것이 존재하지 않았다. 또한 멘지의 번역본에 실려 있는 증명의 내용은 원본에 충실하게 고전적인 방법을 채택하였지만, 여기에서는 명제의 실제적인 측면(본질적 의미)에 대해서도 구체적으로 언급하였다. 그러나 전반적으로는 시간과 재정적인 문제가 결부된 새로운 교정본의 필요성을 느끼지 못하고 있다. 이러한 필요성은 멘지 번역판에 필요한 부분일 것이다. 하지만 이러한 것은 금세기에 일어나기는 쉽지 않을 것이다. 이 책은 멘지의 번역본에서 사용된 큰 틀(도구)을 그대로 유지 하겠지만, 그의 번역본과는 차별된 부분도 어느 정도는 유지할 것이다. 가장 최근의 멘지의 번역본에 대한 주석은 독일의 클리멘스 타에르(Clements Thaer, 1962)에 의해 독일어로 출판되었다. 이 책은 매우 간결하고 간명하게 현대 대수적 언어에 의해 번역되고 해석되었다. 나는 이 책이 전적으로 다른 책으로 읽힐 것이므로, 거의 모든 점에서 그의 의견에 동의하지 않기에 더 이상 언급할 필요성이 없을 것 같다. 나의 주석은 연속적인 이야기로 생각하면 좋겠다. 이것은 결코 시종 일관되지 않다는 것이 무엇인지를 시종일관된 관점에서 시도하고 있다. 내재주의자라고 불리고 있는 것과 같이 “자료론”은 분석을 위한 충분한 가치가 있을 만큼 중대한 수학적 의미를 가지고 있다. 나는 가능한 “자료론”에 제시된 명제의 순서대로 분석을 진행할 것이다. 그리고 언제나 유클리드의 추론을 기억하기 위한 필요에 의해, 또한 나 자신의 이해를 돕기 위해서 보조정리들을 여러분들에게 제시할 것이다. 또한 필요에 따라서는 이 책을 번역하기 앞서 진행하였던 나의 논문(Taisbak, 1991)들도 제시하여 이해를 도울 것이다. 내가 다른 어떤 연구 주제보다 “자료론”에 더 집중하게 된 이후에는, 이전에 썼던 원고들도 수시로 상당 부분 개선되었다. 그리고 몇몇 어려운 질문이 나에게 남기도 했지만 해결하기 위해 지속적으로 노력했고, 그 결과 답을 얻을 수 있었다.

    문장의 서술 방식에 대한 분석과 “자료론”에 대한 포괄적인 측면에서 보면, “자료론”은 <원론>에서는 찾아 볼 수 없는 색다른 측면이 있다. 이로 인해 <원론>의 저자는 유클리드가 아닌 다른 저자라는 의문이 있다. 그렇다면, 유클리드가 아니라면, 그는 누구일까? 알렉산드리아의 유클리드는 아마 이 저작을 직접 저술하지 않았을 수도 있지만, 고대의 선조들에 의해 내려온 정리들을 수집하고 정리하였을 것이다. 즉, “자료론”의 이론들은 그 당시에 내려져 오는 다양한 사람들의 설명이나 해석들 중에서 최고의 해석들을 체계적으로 정리한 것이다. 따라서 유클리드를 “자료론”의 편집자로서 생각하는 것은 전혀 문제가 없을 것으로 보인다.

    나는 이 책에서 동일한 주제를 가지는 명제들은 함께 묶으려고 시도하였다. 이러한 동일한 주제로 분류하는 것이 항상 가능한 것은 아님에도 불구하고, 그것은 항상 유용한 것으로 생각한다. 이러한 구분을 통해 나는 “자료론”의 내용이 되풀이되는 점, 논리적이지 못한 명제들의 분할 등을 들추어낼 수 있었다. 이것은 “자료론”이 기하학적인 해석을 일관성 있게 제시한 것으로 이해하기보다는, 자연스럽지 못한 증명의 마지막을 장식하는 ‘주어짐(given)’이라는 관점에서 서술되어 있는 명제들을 잘 편집한 것으로 생각하는 것이 더 타당할 것으로 보인다. 실제로 명제들의 증명의 최종적인 형태는 그 당시 유클리드의 <원론>에서 사용된 것과 같은 Q.E.D(Quod Erat Demonstration)의 형식을 전혀 취하지 않고 있다. 저자는 철저히 Q.E.D라는 표현을 숨기고 있다가, 마지막 94번째 명제에서 처음이자 마지막으로 사용한 것이다. 이는 유클리드가 마지막에 가서야 결국 최종 목적지에 도착하였다는 생각을 한 것으로 보인다. 

    - 저자 머리말 중에서 -

  • 서문
    ‘주어진 것(Givens)’의 이름 아래 ·1
    <원론>의 시작에서 수학적인 생략 ·3
    암묵적 가정 ·4
    도구 상자(tool box) ·6
     

    1장 정의 ·8
    정의 1 ~ 정의 4:기초 ·8
    평면 · 11
    세 개의 의문과 하나 · 13
    어디에 있는가? · 13
    얼마나 큰가? · 13
    이것과 유사한 것은 무엇인가? · 14
    여섯 개의 유사한 명제 · 15
    숨은 동료(latent co-actors) · 22
    수학자들에게 허용되지 않는 혹은 허용된 도구들? · 27
    돕는 손길 · 29
    기하학적 방법으로 · 30
    크기 · 32
    시작점(starting points) · 33
    정의 5∼정의 8 : 원 ·38
    정의 9∼정의 12 : 주어진 것만큼 더 큰 크기 ··39
    정의 13∼정의 15 : 직선과 방향 ·41
     

    2장 크기와 비 I ·42
    명제 1∼명제 4 : 네 개의 공리적(?) 기초 ·42
    명제 5∼명제 9 : 비의 변형 ·55
    명제 1∼명제 9의 연역적 구조 ·73
     

    3장 주어져 있는 비 만큼 더 큰 크기 ·75
    정의 11 ·75
    명제 10∼명제 21에 관한 개관 ·79
     

    4장 크기와 비 II ·118
    명제 22∼명제 24의 연역적 구조 ·131
     

    5장 위치 : 거리, 방향, 평행 ·133
    명제 25∼명제 38의 연역적 구조 ·169
     

    6장 모양 : 삼각형과 다각형 ·171
    정의 3 ·171
    명제 55 핵심 정리? ·173
    삼각형 ·177
    명제 39∼명제 55의 연역적 구조 ·218
     

    7장 등각 평행사변형 I : 상반비례 ·221
     

    8장 넓이의 활용 I ·227
     

    9장 비와 각 ·250
    명제 56∼명제 67의 연역적 구조 ·266
     

    10장 등각 평행사변형 II : 상반비례 ·268
     

    11장 중복 및 독립적 명제 ·289
    명제 68∼명제 83의 연역적 구조 ·311
     

    12장 넓이의 활용 II ·314
     

    13장 쌍곡선의 절단 : H.G. Zeuthen의 명제 86에 대한 추측 ·319
     

    14장 원 ·343
    명제 84∼명제 94의 연역적 구조 ·363
     

    ◈ 부록 A. 마리누스의 주석 ·365
    ◈ 부록 B. 명제 39와 I.명제 22의 대조 ·367
    ◈ 부록 C. 정의와 명제의 목록 ·369
    ◈ 참고문헌 ·393
    ◈ 찾아보기 ·395

  • 지은이: 크리스천 마리누스 테이즈벡(Christian Marinus Taisbak)

    코펜하겐 대학교의 그리스/라틴 연구소 교수로 재직하다 은퇴한 그리스 수학 전문가이다.


    옮긴이: 서보억, 김동근 

    서보억

    한국교원대학교 수학교육과를 졸업하고, 현재 대구 가톨릭대학교 수학교육과 교수로 재직하고 있다.


    김동근

    국립경상대학교에서 수학교육학 박사 학위를 받았고, 현재 대구 청구고등학교 수학교사로 재직 중이다.

  • 학습자료


    등록된 학습자료가 없습니다.

    정오표


    등록된 정오표가 없습니다.

  • 상품 정보

    상품 상세설명

    364dcb4d0f76685c4b0068018d5ab591_1653289308_768.JPG
    364dcb4d0f76685c4b0068018d5ab591_1653289308_8467.JPG
    364dcb4d0f76685c4b0068018d5ab591_1653289308_9266.JPG
     

    상품 정보 고시

  • 사용후기

    등록된 사용후기

    사용후기가 없습니다.

  • 상품문의

    등록된 상품문의

    상품문의가 없습니다.

  • 배송/교환정보

    배송정보

    cbff54c6728533e938201f4b3f80b6da_1659402509_9472.jpg

    교환/반품 정보

    cbff54c6728533e938201f4b3f80b6da_1659402593_2152.jpg